

DATA MINING FEATURE SUBSET WEIGHTING AND SELECTION USING

GENETIC ALGORITHMS

THESIS

Okan Yilmaz, Lieutenant, TUAF

AFIT/GCE/ENG/02M-05

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
18 Mar 02

Report Type
Final

Dates Covered (from... to)
Jun 2001 - Mar 2002

Title and Subtitle
Data Mining Feature Subset Weighting and
Selection Using Genetic Algorithms

Contract Number

Grant Number

Program Element Number

Author(s)
Lt Okan Yilmaz, TUAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950
P Street, Bldg 640 WPAFB OH 45433-7765

Performing Organization Report Number
AFIT/GCE/ENG/02M-05

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Dr. Rober L. Ewing, Tech Adv. AFRL/IFTA
WPAFB OH 45433

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract
We present a simple genetic algorithm (sGA), which is developed under Genetic Rule and Classifier
Construction Environment (GRaCCE) to solve feature subset selection and weighting problem to have
better classification accuracy on k-nearest neighborhood (KNN) algorithm. Our hypotheses are that
weighting the features will affect the performance of the KNN algorithm and will cause better
classification accuracy rate than that of binary classification. The weighted-sGA algorithm uses real-value
chromosomes to find the weights for features and binary-sGA uses integer-value chromosomes to select
the subset of features from original feature set. A Repair algorithm is developed for weighted-sGA
algorithm to guarantee the feasibility of chromosomes. By feasibility we mean that the sum of values of
each gene in a chromosome must be equal to 1. To calculate the fitness values for each chromosome in the
population, we use K Nearest Neighbor Algorithm (KNN) as our fitness function. The Euclidean distance
from one individual to other individuals is calculated on the d-dimensional feature space to classify an
unknown instance. GRaCCE searches for good feature subsets and their associated weights. These feature
weights are then multiplied with normalized feature values and these new values are used to calculate the
distance between features.

Subject Terms
Data Mining, Genetic Algorithm, Classification, Feature Subset Weighting and Selection, K Nearest
Neighbor Algorithm, Feasibility of a Chromosome, Repair Algorithm, and Fitness Landscape.

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
124

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the Department of Defense or United States Government.

AFIT/GCE/ENG/02M-05

Data mining Feature Subset Weighting and Selection Using

Genetic Algorithms

Presented to the faculty of the Graduate School of Engineering & Management

Of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Engineering)

Okan Yilmaz, B. S.

Lieutenant, TUAF

March 2002

Approved for public release, distribution unlimited

.

AFIT /GCFlENG/02M -05

DATA MINING FEATURE SUBSET WEIGHTING AND

SELECTION USING GENETIC ALGORITHMS

THESIS

Okan Yilmaz, B. S.
Lieutenant, TUAF

Approved:

I -S'" ftI Au J/- ~ z:.
date

~ 18f'fl~(Jl.~ ~ £~-:::=>r. Richard Raines ~~~ date
c;;::~-/ ~ !:::;2::::> I ~ /'1.19.e..c If ~ 2-

Major Karl. M. Mathias (Member) date

'.

AFIT/GCE/ENG/02M-05

DATA MINING FEATURE SUBSET WEIGHTING AND

SELECTION USING GENETIC ALGORITHMS

THESIS

Okan Yilmaz, B. S.
Lieutenant, TUAF

Approved:

Dr. $J«y-Ö. Lamont (Chai

Dr. Richard Raines XMe

Major Karl. M. Mathias (Member)

date

date

date

iv

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my faculty advisor, Dr. Gary B. Lamont, for his

guidance and support throughout the course of this thesis effort. The insight and experience was certainly

appreciated.

 I am also indebted to the many maintenance professionals who spent their valuable time

explaining the processes and procedures they used in the maintenance of their support equipment.

 My deepest appreciation and thanks go to the researchers who developed GRaCCE from the

scratch and who worked on it and improved it’s performance in many ways in following years and left a

powerful application to solve real-world problems at hand.

 I would not have succeeded if my family did not support me within the period of this enduring

effort. I would like to express my grateful appreciation to my parents, my wife, my brother, and my son.

Especially my wife and my son shared my sleepless nights and restless weekends and graciously put up

many relentless studying days with me and gave me the strength and endurance I needed to finish my

education in AFIT. Without their support, this journey would have been a whole lot tougher.

 The real heroes who deserve my greatest appreciation are the citizens of my country who helped

me earn this great education. I express my sincere appreciation to each citizen of Turkey.

Okan Yilmaz

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..IV

TABLE OF CONTENTS .. V

LIST OF FIGURES ...VIII

LIST OF TABLES .. XII

ABSTRACT..XIII

I. INTRODUCTION... 1

1.1 Background... 2

1.1.1 What is Data Mining? ...2

1.1.2 Feature Subset Selection ...4

1.1.3 Feature Subset Weighting ...4

1.1.4 Algorithms For Feature Weighting and Feature Selection ..6

1.2 Approach and Design Goals ... 6

1.3 Problem Scope .. 7

1.4 Approach... 7

1.5 Chapter Summary ... 8

1.6 Outline of the Thesis... 8

II. LITERATURE REVIEW.. 10

2.1 Data Mining .. 10

2.2 Classification .. 10

2.3 Feature Subset Selection ... 12

2.4 Winnowing ... 15

2.5 K-Nearest Neighbor Algorithm .. 15

 vi

2.6 Data Standardization and Normalization .. 16

2.7 Genetic Algorithms... 17

2.7.1 Selection Operator in GAs ..19

2.7.2 Infeasible Solutions and Repair Algorithms ...21

2.8 Chapter Summary ... 23

III. DESIGN METHODOLOGY.. 24

3.1 Introduction... 24

3.2 Genetic Rule and Classifier Construction Environment ... 24

3.2.1 Objective vs. Fitness Structure..25

3.3 Chapter Summary ... 29

IV. IMPLEMENTATION ... 30

4.1 Introduction... 30

4.2 GRaCCE Environment.. 30

4.3 Loading the Data Set... 30

4.4 Encoding Scheme ... 31

4.5 The Repair Algorithm... 34

4.6 GRaCCE Process Diagram ... 35

4.7 Objective Function And Fitness Function... 37

4.8 Stop Criteria.. 42

4.9 Chapter Summary ... 43

V. DESIGN OF EXPERIMENTS AND ANALYSIS.. 44

5.1 Introduction... 44

5.2 Goal of the Experiment... 44

5.3 System Services .. 44

5.4 Performance Metric .. 44

5.5 Experiment Parameters ... 45

5.6 Data Sets Used In the Experiments... 50

 vii

5.7 Chapter Summary ... 59

VI. EXPERIMENT RESULTS... 60

6.1 Introduction... 60

VII. ANALYSIS OF RESULTS... 67

7.1 Introduction... 67

VIII. CONCLUSIONS AND FUTURE WORK .. 76

8.1 Conclusion .. 76

8.2 Future Work.. 79

A. GENETIC RULE AND CLASSIFIER CONSTRUCTION ENVIRONMENT (GRACCE) ... 81

A.1 Feature Selection Phase ... 81

A.2 Partition Generation Phase... 81

A.3 Data Set Approximation Phase .. 82

A.4 Region Identification Phase ... 82

A.5 Region Refinement Phase .. 83

B. FITNESS LANDSCAPES... 84

C. EXTENDED RESULTS OF THE EXPERIMENTS FOR REAL-WORLD DATASETS ... 89

D. MULTI-OBJECTIVE OPTIMIZATION... 98

E. RANDOM NUMBER GENERATORS ... 101

BIBLIOGRAPHY .. 104

VITA .. 109

 viii

LIST OF FIGURES

FIGURE 1 DATA MINING PROCESS DIAGRAM .. 4

FIGURE 2 D-DIMENSIONAL BINARY FEATURE VECTOR SGA-BASED FEATURE SELECTION 14

FIGURE 3 (A) ORIGINAL DATA. (B) SCALED DATA. .. 14

FIGURE 4 THE PSEUDO-CODE OF THE ABSTRACT GENETIC ALGORITHM (AGA).. 18

FIGURE 5 FITNESS LANDSCAPE FOR IRIS DATA SET USING BINARY-SGA ... 27

FIGURE 6 FITNESS LANDSCAPE FOR IRIS DATA SET USING WEIGHTED-SGA .. 28

FIGURE 7 FITNESS LANDSCAPE FOR IRIS (NOISE ADDED) DATA SET USING BINARY-SGA 28

FIGURE 8 FITNESS LANDSCAPE FOR IRIS (NOISE ADDED) DATA SET USING WEIGHTED-SGA 29

FIGURE 9 (A) ENCODING IN A BINARY-SGA (B) ENCODING IN A WEIGHTED-SGA.. 32

FIGURE 10 INFEASIBLE CHILDREN AFTER ONE-POINT CROSSOVER... 33

FIGURE 11 FEASIBLE CHROMOSOMES AFTER REPAIR FUNCTION .. 34

FIGURE 12 BINARY FEATURE SUBSET SELECTION USING A SIMPLE GENETIC ALGORITHM WITH GRACCE.... 35

FIGURE 13 WEIGHTED FEATURE SUBSET SELECTIONS USING A SIMPLE GENETIC ALGORITHM WITH GRACCE36

FIGURE 14 CONFUSION MATRIXES .. 39

FIGURE 15 STOP CRITERIA ALGORITHM FOR WEIGHTED-SGA AND BINARY-SGA ALGORITHMS 43

FIGURE 16 CLASS DISTRIBUTION FOR IRIS DATABASE (FEATURE 1, FEATURE 2) ... 51

FIGURE 17 CLASS DISTRIBUTIONS FOR IRIS DATABASE (FEATURE 3, FEATURE 4) .. 51

FIGURE 18 CLASSIFICATION ACCURACY RATE ON CANCER TRAIN SET FOR WEIGHTED-SGA ANDBINARY-

SGA.. 60

FIGURE 19 CLASSIFICATION ACCURACY RATE ON CANCER TEST SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 61

FIGURE 20 CLASSIFICATION ACCURACY RATE ON HEPATITIS TRAIN SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 62

 ix

FIGURE 21 CLASSIFICATION ACCURACY RATE ON HEPATITIS TEST SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 62

FIGURE 22 CLASSIFICATION ACCURACY RATE ON IRIS TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 63

FIGURE 23 CLASSIFICATION ACCURACY RATE ON IRIS TEST SET FOR WEIGHTED-SGA AND BINARY-SGA. 63

FIGURE 24 CLASSIFICATION ACCURACY RATE ON LIVER TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 64

FIGURE 25 CLASSIFICATION ACCURACY RATE ON LIVER TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 64

FIGURE 26 CLASSIFICATION ACCURACY RATE ON SONAR TRAIN SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 65

FIGURE 27 MEAN CLASSIFICATION ACCURACY RATE ON SONAR TEST SET FOR WEIGHTED-SGA AND

BINARY-SGA .. 65

FIGURE 28 CLASSIFICATION ACCURACY RATE ON PILOT (A1) TRAIN SET OVER FOR WEIGHTED-SGA AND

BINARY-SGA .. 66

FIGURE 29 CLASSIFICATION ACCURACY RATE ON PILOT (A1) TEST SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 66

FIGURE 31 THE MEAN EXECUTION TIME OF WEIGHTED SGA AND BINARY SGA ALGORITHMS 74

FIGURE 32: THE SERIAL EXECUTION TIME OF GRACCE (PREVIOUS) AND GRACCE (CURRENT) 75

FIGURE 33: MEAN NUMBER OF FEATURES SELECTED BY GRACCE ALGORITHM AND DISTAL ALGORITHM

FOR DIFFERENT DATA SETS .. 75

FIGURE 34 FITNESS LANDSCAPE FOR GLASS DATA SET USING BINARY-SGA ... 84

FIGURE 35 FITNESS LANDSCAPE FOR GLASS DATA SET USING WEIGHTED-SGA.. 84

FIGURE 36 FITNESS LANDSCAPE FOR GLASS (NOISE ADDED) DATA SET USING BINARY-SGA..................... 85

FIGURE 37 FITNESS LANDSCAPE FOR GLASS (NOISE ADDED) DATA SET USING WEIGHTED-SGA................ 85

FIGURE 38 FITNESS LANDSCAPE FOR FLAG DATA SET USING BINARY-SGA... 86

FIGURE 39 FITNESS LANDSCAPE FOR FLAG DATA SET USING WEIGHTED-SGA.. 86

 x

FIGURE 40 FITNESS LANDSCAPE FOR LIVER DATA SET USING BINARY-SGA.. 87

FIGURE 41 FITNESS LANDSCAPE FOR LIVER DATA SET USING WEIGHTED SGA ... 87

FIGURE 42 FITNESS LANDSCAPE FOR SOYBEAN DATA SET USING BINARY-SGA.. 88

FIGURE 43 FITNESS LANDSCAPE FOR SOYBEAN DATA SET USING WEIGHTED-SGA 88

FIGURE 44 CLASSIFICATION ACCURACY RATE ON GLASS TRAIN SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 89

FIGURE 45 CLASSIFICATION ACCURACY RATE ON GLASS TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 89

FIGURE 46 CLASSIFICATION ACCURACY RATE ON PIMA TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 90

FIGURE 47 CLASSIFICATION ACCURACY RATE ON PIMA TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 90

FIGURE 48 CLASSIFICATION ACCURACY RATE ON FLIR TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 91

FIGURE 49 CLASSIFICATION ACCURACY RATE ON FLIR TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 91

FIGURE 50 CLASSIFICATION ACCURACY RATE ON TICTACTOE TRAIN SET FOR WEIGHTED-SGA AND

BINARY-SGA.. 92

FIGURE 51 CLASSIFICATION ACCURACY RATE ON TIC-TAC-TOE TEST FOR WEIGHTED-SGA AND BINARY-

SGA.. 92

FIGURE 52 CLASSIFICATION ACCURACY RATE ON VOTES TRAIN FOR WEIGHTED-SGA AND BINARY-SGA. 93

FIGURE 53 CLASSIFICATION ACCURACY RATE ON VOTES TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 93

FIGURE 54 CLASSIFICATION ACCURACY RATE ON WINE TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 94

FIGURE 55 CLASSIFICATION ACCURACY RATE ON WINE TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 94

 xi

FIGURE 56 CLASSIFICATION ACCURACY RATE ON FLAG TRAIN SET FOR WEIGHTED-SGA AND BINARY-SGA

... 95

FIGURE 57 CLASSIFICATION ACCURACY RATE ON FLAG TEST SET FOR WEIGHTED-SGA AND BINARY-SGA

... 95

FIGURE 58 CLASSIFICATION ACCURACY RATE ON SOYBEAN TRAIN FOR WEIGHTED-SGA AND BINARY-SGA

... 96

FIGURE 59 CLASSIFICATION ACCURACY RATE ON SOYBEAN TEST FOR WEIGHTED-SGA AND BINARY-SGA

... 96

FIGURE 60 CLASSIFICATION ACCURACY RATE ON IONOSPHERE TRAIN SET FOR WEIGHTED-SGA AND

BINARY-SGA.. 97

FIGURE 61 CLASSIFICATION ACCURACY RATE ON IONOSPHERE TEST SET FOR WEIGHTED-SGA AND BINARY-

SGA.. 97

 xii

LIST OF TABLES

TABLE 1 SUMMARY OF REPRESENTATIONS AND OPERATORS... 20

TABLE 2 WORST CASE TIME COMPLEXITY ANALYSIS OF GRACCE ... 25

TABLE 3 NORMALIZATION TECHNIQUES USED IN GRACCE.. 31

TABLE 4 EXPERIMENT ENVIRONMENTS... 45

TABLE 5 THE VALUE OF GRACCE PARAMETERS FOR THE EXPERIMENTS.. 45

TABLE 6 DATA SETS USED IN THE EXPERIMENTS... 49

TABLE 7 SUMMARY STATISTICS FOR FISHER'S IRIS DATABASE... 50

TABLE 8 REAL-WORLD DATASETS IN IRVINE REPISOTORY... 58

TABLE 9 CLASSIFICATION ACCURACY RATE ON REAL-WORLD DATA SETS USED IN THE EXPERIMENTS

WITHOUT FEATURE SELECTION AND FEATURE WEIGHTING ... 67

TABLE 10 THE MEAN CLASSIFICATION ACCURACY RATE AND STANDARD DEVIATION FOR DIFFERENT DATA

SETS.. 69

TABLE 11 90% CONFIDENCE INTERVAL, 0.95-QUANTILE OF A T-VARIATE WITH 9 DEGREES OF FREEDOM FOR

THE WEIGHTED-SGA AND BINARY-SGA ALGORITHMS.. 70

TABLE 12 TESTING FOR A ZERO MEAN FOR WEIGHTED-SGA AND BINARY-SGA AT 90% CONFIDENCE LEVEL

... 71

TABLE 13 COMPARISON BETWEEN VARIOUS APPROACHES FOR FEATURE SUBSET SELECTION AND WEIGHTING

... 72

TABLE 14 COMPARISON OF DISTAL ALGORITHM AND GRACCE ALGORITHM IN TERMS OF CLASSIFICATION

ACCURACY BY USING 11 DIFFERENT DATA SETS BY ZERO MEAN TESTING TECHNIQUE........................ 73

AFIT/GCE/ENG/02M-05

 xiii

ABSTRACT

We present a simple genetic algorithm (sGA), which is developed under Genetic Rule and

Classifier Construction Environment (GRaCCE) to solve feature subset selection and weighting problem to

have better classification accuracy on k-nearest neighborhood (KNN) algorithm. Our hypotheses are that

weighting the features will affect the performance of the KNN algorithm and will cause better classification

accuracy rate than that of binary classification. The weighted-sGA algorithm uses real-value chromosomes

to find the weights for features and binary-sGA uses integer-value chromosomes to select the subset of

features from original feature set. Since we use real-value chromosomes for weighted-sGA, instead of

using standard crossover and mutation operators, these GRaCCE sGA operators are modified to adjust

them to the feature subset selection and weighting problem. Linear ranking selection method is used for

breeding new individuals and two-point crossover operator is used for both algorithms. Exchange mutation

operator is selected for weighted-sGA and inversion mutation operator is selected for binary-GA. A Repair

algorithm is developed for weighted-sGA algorithm to guarantee the feasibility of chromosomes. By

feasibility we mean that the sum of values of each gene in a chromosome must be equal to 1. To calculate

the fitness values for each chromosome in the population, we use K Nearest Neighbor Algorithm (KNN) as

our fitness function. The Euclidean distance from one individual to other individuals is calculated on the d-

dimensional feature space to classify an unknown instance. GRaCCE searches for good feature subsets and

their associated weights. These feature weights are then multiplied with normalized feature values and

these new values are used to calculate the distance between features.

The previous GRaCCE algorithm sorts the calculated distances to find the k nearest neighbors to

an unknown instance but this is a huge bottleneck in the GraCCE algorithm since the complexity of sort

operation is O (n2) and this sorting has to be done for each Eucidean distance calculation. We know that K

for KNN algorithm is usually a very small integer number (K<20). So that instead of sorting, the new

GRaCCE algorithm searches only for the K minimum distance values in the neighborhood list matrix.

The results show that by giving appropriate weights to features it is possible to have better

classification accuracy than that of binary feature subset selection.

 1

 DATA MINING FEATURE SUBSET WEIGHTING AND

SELECTION USING GENETIC ALGORITHMS

I. Introduction

The widespread availability of relatively inexpensive but powerful computing has led to another

revolution, the storage of massive amounts of data in electronic form. Raw data stored in data warehouses

are not useful for decision making unless necessary data mining rules are inducted from these raw data.

Data mining is the process of searching for these rules, which then are presented to decision makers to be

employed for other real world data. The concept of data mining was started almost 10 years ago. The

interest in data mining field and its exploitation in different domains (marketing, finances, banking,

engineering, health care, power systems, meteorology, military, etc.) has increased recently due to a

combination of the following factors:

Emergence of very large amounts of data (terabytes of data due to computer automated data

measurement and/or collection, digital recording, centralized data archives, and software and hardware

simulations).

Dramatic cost decrease of mass storage devices

Emergence and quick growth of fielded database management systems

Advances in computer technology such as faster computers and parallel architectures

Continuous developments in automatic learning techniques

Possible presence of uncertainty in data (noise outliers, missing information)

The general purpose of data mining is to process the information from the enormous stock of data

we have or that we may generate, so as to develop better ways to handle data and support future decision-

 2

making. Sometimes, the patterns to be searched for and the models to be extracted from data are subtle and

require complex calculus and/ or significant specific domain knowledge. Or even worse, there are situation

where one would like to search for patterns that humans are not well suited to find, even if they are experts

in the field. For example, in many power system related problems, one is faced with high dimensional data

sets that can not be easily modeled and controlled on the whole, and, therefore, automatic methods capable

of synthesizing structures from such data become a necessity.

1.1 Background

This section provides background information needed to understand the thesis problem. This

information includes material on data mining, classification, feature subset selection and weighting

problem and genetic algorithms.

1.1.1 What is Data Mining?

Data mining is the search for valuable information in large volumes of data. There are many other

terms carrying a similar or slightly different meaning to data mining, such as knowledge mining from

databases, knowledge extraction, data/pattern analysis, data archaeology, and data dredging. Many

people treat data mining as a synonym for another popularly used term, “Knowledge Discovery in

Databases”, or KDD [1]. Data mining is the process of finding patterns and relations in large databases

[21]. The primary purpose of the data mining is to extract information from huge amounts of raw data [22].

Data mining using statistical methods [23] have been quite successful.

Traditional data analysis is assumption driven in the sense that a hypothesis is manually formed

and validated (by statistical means) against the data. In contrast, data mining is discovery driven in that

useful patterns are automatically extracted from data. In order to accomplish this task, data mining systems

frequently utilize methods from disciplines such as artificial intelligence, machine learning and pattern

recognition.

 3

The data mining algorithms discussed in this document operate on data sets composed of vectors

(instances) of independent variables (or features). For example, a database may describe a group of

automobiles in terms of their fuel type, number of doors, horsepower, engine location, length, width, price,

engine size etc. In this case, fuel type is an example of feature and each instance corresponds to a distinct

automobile. The general data mining process is shown in Figure 1; the sub-process depicted in this flow

chart include:

Data Selection / Sampling – The sheer size of databases make it impractical to process them in

their entirety. As a result, it is often necessary to winnow the data in some manner or randomly select of

instances for processing

Cleaning / Preprocessing – During this phase, the selected data is prepared for processing by the

data mining algorithm. This can involve translating the data into an acceptable format or replacing missing

or illegitimate entries.

Transformation / Reduction – The purpose of this phase is to revise and / or redefine the feature

set. In many cases all the features included in a given data set are not required for prediction. In either

instance, it may be desirable to create new features to facilitate the mining process.

Data mining- this refers to the application of selected data mining method to the data

Evaluation Criteria - In this phase the output of the miming algorithm is evaluated against

goodness criteria. This is typically done to reduce the volume of information produced to that which is

most useful or relevant

Visualization – This is the task of massaging the output to facilitate manual analysis. Information

that can be easily understood has the best chance of becoming usable knowledge.

 4

Figure 1 Data mining process diagram

1.1.2 Feature Subset Selection

The selection of appropriate features is an important precursor to most data mining methods. A

good feature selection mechanism helps to facilitate classification by eliminating noisy or non-

representative features that can impede recognition. Even features providing some useful information can

reduce the accuracy of a classifier when the amount of training data is limited [2-4]. This so-called “curse

of dimensionality”, along with the expense of measuring and including features, demonstrates the utility of

obtaining a minimum-sized set of features that allow a classifier to discern pattern classes well.

1.1.3 Feature Subset Weighting

Some classification rules, such as the K-nearest neighbors (KNN) rule, can be further enhanced by

multiplying each feature by a weight value proportional to the ability of the feature to distinguish among

pattern classes. Feature weighting is a variant of feature selection. It involves assigning a real-valued

 5

weight to each feature. The weight associated with a feature measures its relevance or significance in the

classification task [5]. Feature subset selection is a special case of weighting with binary weights. This

feature weighting method is a form of feature extraction defining new features in terms of the original

feature set to facilitate more accurate pattern recognition. Feature selection and extraction, in combination

with the K-nearest neighbors classification rule, have been shown to provide increased accuracy over the

KNN rule alone. This method can aid in the analysis of large data sets by isolating combinations of features

that distinguish “well” among different pattern classes [6,7].

Because each feature used as part of the classification procedure can increase the cost and the

running time of a recognition system as well as reduce the accuracy of the result, there is strong motivation

to design and implement systems using small feature sets. At the same time, there is a potentially opposing

need to include a sufficient set of features to achieve high recognition rates under difficult situations.

Several authors have examined the use of the heuristic search for feature subset selection; this

often operates in conjunction with a branch-and-bound search [8]. Others have explored randomized [9]

and randomized, population-based heuristic search techniques such as genetic algorithms [10,11] to select

feature subsets for use with decision-tree or nearest-neighbor classifiers.

Feature subset selection algorithms fall into two categories based on whether or not they perform

feature selection independently of the learning algorithm that constructs the classifier. If the technique

performs feature selection independently of the learning algorithm, it is defined as a “filter approach”.

Otherwise, it follows a “wrapper approach” [8].

It is known that reducing the number of features increases the classification accuracy, but we

assume that besides reducing the number of features, weighting features for the classification process may

have more impact on the classification accuracy than feature selection

 6

1.1.4 Algorithms For Feature Weighting and Feature Selection

GAs are search strategies based on the principles of natural selection. In a GA a population of

possible solutions called chromosomes is maintained. Chromosomes are selected (each according to its

fitness), recombined, and mutated to evolve a new population. The process is repeated until a “a stopping

condition” has been achieved for the most-fit individual in the population or when a certain number of

generations have been produced. GAs have been successfully used in a variety of optimization problems,

and are best known for being robust search techniques that can search extremely large spaces and obtain

globally competitive solutions.

1.2 Approach and Design Goals

This thesis effort investigates one data mining tool and the effectiveness and the efficiency of a

developed GA algorithm that combines the feature weighting and feature selection methods in one

technique in terms of classification accuracy and the execution time. The tool used is the Genetic Rule and

Classifier Construction Environment (GRaCCE) developed by Marmelstein [19] and is discussed in

Chapter 3. The primary emphasis is to analyze the GRaCCE and re-implement portions of it to increase the

classification accuracy and to decrease the overall execution time.

The system under test is GRaCCE and the scope of this effort is limited to improvements of the

classification accuracy via feature weighting and feature subset selection. Other improvements to overall

GRaCCE algorithm such as using parallel processing techniques to reduce the overall execution time of the

proposed serial algorithm are beyond the scope of this effort and are not researched

Thus, the investigation applies genetic algorithms to a feature subset weighting and feature subset

selection problem. The goal is to evaluate the performance of the genetic algorithm for feature subset

weighting and feature subset selection problem in terms of classification accuracy rate and to compare the

classification accuracy of two different genetic algorithms when the encoding uses real-value strings for

feature subset weighting and uses binary-value strings for feature subset selection.

 7

1.3 Problem Scope

The portion of the feature subset weighting and feature subset selection problem addressed is the

determination of the best features or attributes that can later be used to classify an unknown object, pattern,

image or target. Reduction in the original feature size speeds up the learning process of any classifier and

increase the classification accuracy of classifier system. The primary focus is increasing the classification

accuracy rate by either feature subset weighting or feature subset selection encoding. Real-world datasets

are used to train and validate the quality of our genetic algorithm. Then a very specific real-world dataset

used to show that our genetic algorithm could solve a real world problem. No attempt is made to fine tune

genetic variables (mutation rate, crossover rate, selection operator, and the others) for optimal performance.

If tuning is to be done, a large number of various problems should be used to fine tune a genetic algorithm

so that the fine tune applies to the general problem and not a specific problem. But many preliminary test

experiments are conduced on the real-world datasets to find good values for the genetic algorithm

parameters but these values are only decided for the feature subset weighting and feature subset selection

problem and not for other optimization problems.

The reason behind the selection of this problem lies behind the desire to increase our classification

accuracies on unknown objects and speed up the learning process. The new standardization and

normalization algorithms, new genetic algorithm operators, new classification algorithms and new random

number generators added to the GRaCCE environment provides better quality to this real-world application

in solving the real-world problems.

1.4 Approach

The approach taken focuses on researching good genetic algorithm operators, feature subset

weighting and feature subset selection encoding. Implementation makes extensive use of existing design,

code, and test data. Six major objectives are addressed:

• Analyze the performance of genetic algorithm on real-world datasets

 8

• Compare the performance of real-value genetic algorithm and binary-value genetic

algorithm according to their classification accuracies on real-world datasets

• Compare the overall performance of the genetic algorithm with the other existing

classification algorithms

• Propose genetic encoding of feature weight subsets and feature selection subsets

• Propose better genetic algorithm operators

• Integrate the new code to the existing GRaCCE environment

The problem domain is analyzed and the problematic areas are determined. The application is

developed according to the user’s requirements and expectations. The techniques to solve the problem is

analyzed, their inefficiencies to solve the problem area are determined and these inefficiencies are

optimized in the new algorithm.

1.5 Chapter Summary

In this chapter an introduction is given to data mining and the classification problem. The reason

for feature weighting and feature selection is explained. The algorithms used for feature subset weighting

and selection problem is introduced.

1.6 Outline of the Thesis

This thesis consists of six chapters. This chapter provides background information and defines the

general problem of the thesis research. Chapter 2 focuses on historical perspective, problem domain

models, and possible algorithm domains for solution of feature subset selection and feature weighting

problem. Chapter 3 analyzes the problem, presents the possible high level; design solution, and narrows the

focus of the research problem Chapter 4 presents the low-level design of the narrowed research problem.

Chapter 5 gives the detailed justification of our methodology and experimental design process (parameter

variations, hypothesis, number of tests, presentation techniques, experiment datasets). Chapter 6 includes

 9

the results of our experiments and Chapter 7 includes the statistical analysis of our experiment results.

Chapter 8 presents the conclusions and the recommendations derived from the research effort.

 10

II. Literature Review

This chapter summarizes current literature related to data mining, feature subset weighting and

feature subset selection, winnowing, k-nearest neighborhood classifier and genetic algorithms.

2.1 Data Mining

We live in the age of information where data is plentiful, to the extent that we are typically unable

to process all of it usefully. Computer science has been challenged to discover approaches that can sort

through the mountains of data available and discover the essential features needed to answer a specific

question. These approaches must be able to process large quantities of data, in reasonable time and in the

presence of “noisy” data i.e., irrelevant or erroneous data. One of these approaches is called “data mining” .

Data mining is the search for valuable information in large volumes of data. There are many other

terms carrying a similar or slightly different meaning to data mining, such as knowledge mining from

databases, knowledge extraction, data/pattern analysis, data archaeology, and data dredging. Many

people treat data mining as a synonym for another popularly used term, “Knowledge Discovery in

Databases”, or KDD [1]. Alternatively, others view data mining as simply an essential step in the process

of knowledge discovery in databases.

The real-world databases are highly susceptible to noise, outliers, missing, and inconsistent data

due to their typically huge size, often several gigabytes or more.

2.2 Classification

Classification is an important aspect of the data-mining problem. A classification problem has an

input data set called the training set, which consists of a number of examples each having a number of

attributes. The attributes are either continuous, when the attribute values are ordered, or categorical, when

the attribute values are unordered, or nominal when the attribute values are labeled. One of the categorical

attributes is called the class label or the classifying attribute. The objective is to use the training data set to

 11

build a model of the class label based on the other attributes such that the model can be used to classify new

data not from the training data set.

The discovered knowledge is usually represented in the form of IF-THEN prediction rules, which

have the advantage of being a high-level, symbolic knowledge representation, contributing to the

comprehensibility of the discovered knowledge. Aguilar and Riquelme put these decision rules in a

decision queue (DQ), which means the obtained rules must be applied in specific order. With this policy,

the number of rules may be reduced because the rules could be one inside of another. The user decides

what representation provides the best accuracy and what produces the smaller number of rules. DQ presents

the following structure:

If conditions Then class

Else if conditions Then class

 Else if conditions then class

 …………………………………

 Else “unknown class” [38]

The discovered rules could be evaluated according to several criteria, such as the degree of

confidence in the prediction, classification accuracy rate on unknown-class examples, comprehensibility,

cost, etc

Because each feature used as part of the classification procedure can increase the cost and running

time of a classifier system as well reduce the accuracy of the result, there is a strong motivation to design

and implement systems using small feature sets. Feature weighting is a variant of feature selection. It

involves assigning a real-valued weight to each feature. The weight associated with a feature measures its

relevance or significance in the classification task. Feature subset selection is a special case of weighting

with binary weights.

 12

2.3 Feature Subset Selection

The feature subset selection problem is well known in statistics and patterns recognition.

However, many of the techniques deal exclusively with features that are continuous, or, make assumptions

that do not hold for many practical machine-learning algorithms. For example, one common assumption

(monotonicity) says that increasing the number of features can never decrease the performance.

Although assumptions such as monotonicity are often invalid for machine learning, one approach

to feature subset selection in machine learning has borrowed search and evaluation techniques from

statistics and patterns recognition. This approach dubbed the wrapper approach and estimates the accuracy

of the feature subsets via a statistical re-sampling technique (such as cross validation) using the actual

machine-learning algorithm. The approach has proved to be useful but is very slow to execute as the

induction algorithm is called respectively.

Another approach to feature subset selection, called filtering, operates independently of any

induction algorithm- undesirable features are filtered out of the data before induction begins. Filter methods

typically make use of all the training data when selecting a subset of features. Some looks for consistency

in the data. That is, they note when every combination of values for a feature subset is associated with a

single class label. Another eliminates the features whose information content (concerning other features

and the class) is subsumed by some number of the remaining features. Still other methods attempt to rank

features according to a relevancy score. Filters have proven to be much faster than wrappers and hence can

be applied to large data sets containing many features.

Computational studies of Darwinian evolution and natural selection have led to numerous models

for solving optimization [12 - 16]. Genetic Algorithms are search algorithms based on the mechanics of

natural selection and natural genetics. They have been developed by John Holland and have drawn

increasing interest. GA’s comprise a subset of these evolution-based optimization problems techniques

focusing on the application of selection, mutation, and recombination to a population of competing problem

solutions [17], [18]. GA’s are parallel, iterative search algorithms, and have successfully applied to a broad

 13

spectrum of optimization problems, including many pattern recognition and classification tasks. In our

work, a genetic algorithm is designed to improve feature weights used in the distance calculation of KNN.

The problem of dimensionality reduction is well suited to formulation as an optimization problem.

Given a set of d-dimensional input patterns, the task of the GA is to find a transformed set of patterns, in an

m-dimensional space (m<d) that maximizes a set of optimization criteria. Typically, the transformed

patterns are evaluated based upon both their dimensionality, and their class separation or the classification

accuracy. The GA maintains a population of computing feature transformation matrices. To evaluate each

matrix in this population, the input the matrix, producing a set of transformed patterns, which are then sent

to a classifier, multiplies patterns. The available samples are divided into a training set, used to train the

classifier, and a testing set, used to evaluate classification accuracy. The accuracy obtained is then returned

to the GA as a measure of the quality of the transformation matrix used to obtain the set of transformed

patterns. Using this information, the GA searches for a transformation that minimizes the dimensionality of

the transformed patterns while maximizing the classification accuracy.

A direct approach to using GA’s for feature selection was introduced by Siedlecki and Sklansky

[19]. In their work, a GA is used to find a good binary vector, where each bit is associated with a feature. If

the ith bit of this vector equals 1, then the ith vector is allowed to participate in classification; if the bit is 0,

then the corresponding feature does not participate (see Figure 2). Each resulting subset of features is

evaluated according to its classification accuracy on a set of testing data using K-nearest neighbor

classifier.

The single bit associated with each feature is expanded to a real-valued coefficient, allowing

independent linear scaling of each feature, while maintaining the ability to remove features from

consideration by assigning a weight of zero. Given a set of feature vectors of the form X= {x1, x2, x3,….,

xd}, the GA produces a transformed set of vectors of the form X′= { w1x1, w2x2, w3x3,…., wdxd } where wi

is a weight associated with feature i. Each feature value is first normalized, and then scaled by the

associated weight prior to training, testing, and classification. This linear scaling of features prior to

classification allows a classifier to discriminate more finely along feature axes with larger scale factors. A

 14

KNN classifier is used to evaluate each set of feature weights. The effects of linear feature weighting on the

KNN classification rule are visualized in Figure 3. Patterns plotted in feature space are spread out along

feature axes with higher weight values. The value of K for KNN classifier is fixed and determined

empirically prior to feature extraction.

Figure 2 d-dimensional binary feature vector sGA-based feature selection

Figure 3 (a) Original data. (b) Scaled data.

 15

2.4 Winnowing

Class overlap within a given data set can impede the rule induction process and degrade the

quality of the generated rule set. Since the final product of a data mining process is the rules generated for a

specific problem domain, a data mining application must be able to generate these rules, which will be

presented to the decision makers. Feature subset selection and weighting does not clear these class overlaps

but feature subset selection and feature weighting process finds the features which have better classification

accuracy and causes less class overlaps when compared to original feature sets. Since these class overlaps

cannot be removed by feature selection and feature weighting technique, a technique, which is called

“winnowing”, is used to get rid of these class overlaps. Since these class overlaps degrade the quality of

the data mining rules or prevent extracting these rules from the system, it is therefore desirable to make the

classes piecewise, linearly separable. Wagner’s edited nearest neighbor technique [25] provides an elegant

way of accomplishing this goal. Wagner’s method removes data points from the training set that are

misclassified by a KNN algorithm but this time instead of using original feature set, reduced feature set can

be used to find misclassified points. This process continues until it converges to a subset of the data with no

classification error. Devijer and Kittler [26] proved that this procedure is asymptotically Bayes-optimal

with respect to the original data set. Winnowing can be performed on either the full feature set or on a

specified feature subset. As an added benefit, there is evidence showing that this procedure contributes to a

reduction in rule set size (for further reference Marmelstein 1999, [19]).

2.5 K-Nearest Neighbor Algorithm

This classifier classifies a pattern x by assigning it to the class label that is most frequently

represented among it’s k nearest pattern. In the case of a tie, the test pattern is assigned the class with

minimum average distance to it. Hence, this method is sensitive to the distance function. For the minimum

average distance, the metric employed is the Euclidean distance. This metric requires normalization of all

features into the same range. The k-nearest neighbor classifier is a conventional non-parametric classifier

that is said to yield good performance for optimal values of k.

 16

In KNN classification, each training pattern is represented in a d-dimensional space according to

the value of each its d features. The test pattern is then represented in the same space, and its k nearest

neighbors, for some constant k, is selected. Neighbors are usually calculated according to Euclidean

distance, although other metrics (e.g., Mahalanobis distance) are sometimes used. The class of each of

these k neighbors is then tallied, and the class with the most “votes” is selected as the classification of the

test pattern. The simplicity of the KNN classifier makes it relatively easy to implement. Its non-parametric

nature allows classification of a broad range of data sets, including those for which feature values do not

follow a multivariate Gaussian distribution. Due to the use of Euclidean distance metric, the KNN decision

rule is sensitive to scaling of the feature values- a necessary prerequisite for use with a weighted-GA.

Classifiers based on the class-conditional distributions of the feature values, such as Bayes classifier, are

invariant to scaling of the feature values. Finally, the KNN classifier is well explored in the literature, and

has been demonstrated to have good classification performance on a wide range of real-world data sets.

The asymptotic error rate of KNN decision rule can be shown to be bounded by the Bayes error as k →

infinity [20].

2.6 Data Standardization and Normalization

An attribute is normalized by scaling its values so that they fall within a small-specified range,

such as 0 to 1.0. Normalization is particularly useful for classification algorithms involving neural

networks, or distance measurements such as nearest-neighbor classification and clustering. If using the

neural network back propagation algorithm for classification mining, normalizing the input values for each

attribute measured in the training samples helps speed up the learning phase. For distance-based methods,

normalization helps prevent attributes with initially large ranges from outweighing attributes with initially

smaller ranges. There are many methods for data normalization such as min-max normalization, z-score

normalization, and normalization by decimal scaling.

 17

Min-max normalization performs a linear transformation on the original data. Suppose that minA

and maxA are the minimum and maximum values of an attribute A. Min-max normalization maps a value v

of A to v′ in the range [new_ minA , new_ maxA] by computing

v′= v- minA / maxA - minA × (new_ maxA - new_ minA) + new_ minA. (2.1)

Min-max normalization preserves the relationship among the original data values. It encounters an

“out of bounds” error if a future input case for normalization falls outside of the original data range for A.

In z-score normalization (or zero-mean normalization), the values for an attribute A are

normalized based on the mean and standard deviation of A. A value v of A is normalized to v’ by

computing

v′= v - A(µ) / σA (2.2)

 Where A(µ) and σA are the mean and standard deviation, respectively, of attribute A. This method

of normalization is useful when the actual minimum and maximum of attribute A are unknown, or when

there are outliners which dominate the min-max normalization.

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute

A. The number of decimal points moved depends on the maximum absolute value of A. A value v of A is

normalized to v’ by computing

 v′ = v / 10j′ (2.3)

Where j is the smallest integer such that Max (| v′ |) < 1.

2.7 Genetic Algorithms

Holland (1975) introduced genetic algorithms. In these algorithms the search space is represented

as a collection of individuals. The individuals represent candidate solutions to the optimization problem

being solved. The purpose of using genetic algorithm is to find the individual from the search space with

the best “genetic material” . A wide range of genetic representations (e.g., bit vectors, LISP programs,

 18

matrices, etc.) can be used to encode the individuals depending on the space of solutions that needs to be

searched. In genetic algorithms, the individuals are represented by either integer-value strings (or matrices)

or real-value (or matrices), which are often called chromosomes. The resulting search space corresponds to

an n-dimensional Boolean space. In the feature subset selection problem, each individual would represent a

feature subset. The quality of an individual (or fitness of the individual in the population) is measured with

an evaluation function. In the feature subset selection problem, the fitness function would evaluate the

selected features with respect to some criteria of interest (e.g., cost of the resulting classifier, classification

accuracy of the classifier, etc.). The part of the search space to be examined is called the population.

Roughly, a genetic algorithm works as follows (see Figure 4).

Figure 4 The pseudo-code of the Abstract Genetic Algorithm (AGA)

First, the initial population is chosen, and the quality of this population is determined, next, in

every iteration parents are selected from the population. These parents produce children (or offspring),

which are added to the population. For all newly created individuals of the resulting population a

probability near to zero exits that they will “mutate” , i.e. they will change their hereditary distinctions.

 19

After that, some individuals are removed from the population according to a selection criterion in order to

reduce the population to its initial size. One iteration of the algorithm is referred to as a generation.

2.7.1 Selection Operator in GAs

Evolutionary algorithms use some form of fitness-dependent probabilistic selection of individuals

from the current population to produce individuals for the next generation. A variety of selection

techniques have been explored in the literature. Some of the most common ones are fitness-proportionate

selection, rank-based selection, and tournament-based selection .he selected individuals are subjected to

the action of genetic operators to obtain new individuals that constitute the next generation. The operators,

which define the child production process and the mutation process, are called crossover and mutation

operator respectively. The genetic operators are usually designed to exploit the known properties of genetic

representation, the search space, and the optimization problem to be solved. Mutation and crossover play

different roles in the genetic algorithm. Mutation is needed to explore new states and helps the algorithm to

avoid local optima. Crossover should increase the average quality of the population. By choosing adequate

crossover and mutation operators, the probability that the genetic algorithm results in a near-optimal

solution in reasonable number of iterations is increased. Genetic operators enable the algorithm to explore

the space of candidate solutions. Crossover and Mutation

Mutation operates on a single string and generally changes a bit at random. Thus, a string 11010

may, as a consequence of random mutation, get changed to 11110. Crossover, on the other hand, operates

on two parent strings to produce two offspring. With a randomly chosen crossover position 4, two strings

01101 and 11000 yield the offspring 01100 and 11001 as a result of crossover. Other genetic

representations (e.g., matrices, LISP programs) require the use of appropriately designed genetic operators

There are many different crossover and mutation operators and these operators are summarized in Table 1.

 20

Table 1 Summary of representations and operators

Representation Operators Authors
Binary Classical + repair operator Lidd (1991)
Path Partially- Mapped Crossover Goldberg and Lingle (1985)
 Order Based Crossover Syswerda (1991)
 Position Based Crossover Syswerda (1991)
 Heuristic Crossover Grefenstette (1987b)
 Edge Recombination Crossover Whitley et al.
 Sorted Match Crossover Brady (1985)
 Maximal Preservative Crossover Muhlenbein et al. (1988)
 Voting Recombination Crossover Muhlenbein (1989)
 Alternating- Position Crossover Larranaga et al. (1996a)
 Displacement Mutation Michalewicz(1992)
 Exchange Mutation Banzaf (1990)
 Insertion Mutation Fogel (1990)
 Simple Inversion Mutation Holland(1975)
 Inversion Mutation Fogel (1990)
 Scrmable Mutation Syswerda (1991)
Adjacency Alternating Edge Crossover Grefenstette et al. (1985)
 Subtour Chunks Crossover Grefensette et al. (1985)
 Heuristic Crossover 1 Grefensette et al. (1985)
 Heuristic Crossover 2 Jog et al. (1989)
 Heuristic Crossover 3 Suh and Van Gucht (1987)
Ordinal Classical operators Grefenstette et al. (1985)
Matrix Intersection Crossover Operator Fox and Mc Mahon (1987)
 Union Crossover Op [erator Fox and Mc Mahon (1987)

As the primary sources of exploration, crossover and mutation play important roles in GA search

process. Many of these roles relate to building blocks: segments of an individual that affect that

individual’s fitness.

Crossover is expected to propagate existing building blocks to the next generation. By

manipulating “chunks” of an individual rather than individual bits, crossover is expected to be able to

transfer entire building blocks from parent to offspring. Crossover is able to make potentially large changes

from parents to offspring with minimal distribution of building blocks [28].

Crossover is expected to combine existing building blocks. Lower order building blocks are more

likely to be found through random sampling and can be searched for in parallel on different members of the

GA population. Higher order building blocks are easier to construct from combining lower order building

blocks than from random sampling [28].

 21

Both crossover and mutation are expected to construct new building blocks and disrupt existing

building blocks. [28]

Mutation is expected to introduce diversity. Since crossing over identical segments provides no

new information, once the entire population possesses the same value at a particular bit position, only

mutation is able to insert new values of that bit into the population. [28]

As the population becomes more homogeneous, crossover becomes less productive [28]. Mutation

provides some of the necessary diversity to a GA population; it is considerably more active than crossover

at destroying building blocks and as good or better than crossover at construction new building blocks.

Increasing the genome length, and consequently the amount of non-coding material makes crossover less

active within building block boundaries, but does not affect mutation’s constructive and destructive effects

on building blocks.

2.7.2 Infeasible Solutions and Repair Algorithms

Repair algorithms enjoy a particular popularity in the evolutionary computation community: for

many combinatorial optimization problems (e.g. the traveling salesman problem, the knapsack problem,

and the set covering problem) it is relatively easy to repair an infeasible individual. Such repaired version

can be used either for evaluation only; that is, evalu(y) = evalf(x)

Where x is a repaired (i.e. feasible) version of y, or it can also replace (with some probability) the

original individual in the population. [29]

The crossover and mutation operators may not always produce feasible individuals, but the

individuals that are evaluated by fitness function must be feasible individuals. To prevent infeasible

individuals from taking place in the population, repair algorithms are developed. Repair algorithms are

user-specified algorithms and are selected according to the criteria of feasibility for the problem domain.

For the feature weighting problem, the sum of weights has to be equal to 1, on the other hand the since the

crossover operator produce new individuals by changing the genes of parent chromosomes randomly, the

 22

new individuals may not necessarily be feasible (the feasible individuals have a sum of 1). If real-value

chromosomes are used as in feature weighting problem, ordinary crossover operators (e.g., 1-point

crossover, 2-point crossover, Uniform crossover) always produce infeasible solutions, and to prevent these

infeasible individuals, either a repair algorithm has to be defined or a new recombination operator has to be

defined. For the later solution, Demiroz and Guvenir proposed a new crossover operator, which is called

continuous uniform crossover (CUCO) operator, that guarantees the legality of the offspring. Given two

chromosomes x=<x1, x2,.....,xn> and y=<y1, y2,......,yn> such that n is the number of genes in a chromosome,

the offspring are defined as x′=<x1′,x2′,.....,xn′> and y′=<y1′, y2′,....,yn′>, where

xi′=s × xi + (1-s) × yi

yi′=s × yi + (1-s) × xi

Here s, called stride, is constant through a single crossover operation. This crossover operation

guarantees that the sum of the alleles of an offspring is still 1 given that the sum of the parents’ alleles is 1.

The process of fitness-dependent selection and application of genetic operators to generate

successive generations of individuals is repeated many times until a satisfactory solution is found (or the

search fails). It can be shown that evolutionary algorithms of the sort outlined above simulate highly

opportunistic and exploitative randomized search that explores high-dimensional search spaces rather

effectively under certain conditions In practice, the performance of evolutionary algorithms depends on a

number of factors including: the choice of genetic representation and operators, the fitness function, the

details of the fitness-dependent selection procedure, and the various user-determined parameters such as

population size, number of generations, probability of application of different genetic operators, etc.

There can be various criteria for stopping GA. For example, if it is possible to determine the

number of generations required for a good solution before hand. But the stopping criteria should normally

take into account the uniformity of the population, the relationship between the average objective function

 23

with respect to the objective function of the best individual, as well as not producing an increase in the

objective function of the best individual during a fixed number of cycles. One possible stopping criteria for

feature subset selection and weighting problem is, if the classification accuracy keep decreasing on the test

set for a while the classification accuracy increases on the training set, a threshold value can be defined and

when this threshold value is reached, the execution of GA can be stopped by assuming that because of the

bias on the classifier to the some features because of the characteristics of the train set, the solution that is

about to be found can not be generalized to test set and to the future unknown patterns. An important aspect

of Gas is that, GAs can return the best, complete solution at any given time. This characteristic is important

especially for the problems where time is important and solution is needed in a short time. Further

description of genetic algorithms can be found in Goldberg (1989) and Davis (1991).

2.8 Chapter Summary

In this chapter, we explained the problem domain in detail. The data mining process is introduced

and the literature about the feature subset weighting and selection problem is reviewed. KNN Classifier

explained and different normalization techniques to normalize the original feature values in any data set are

introduced. The idea of winnowing is explained. We also introduced the necessary information to

understand the sGA Algorithm, the genetic operators and repair functions to repair the infeasible solutions.

 24

III. Design Methodology

3.1 Introduction

This chapter discusses the design methodology we followed to develop our solution for the feature

subset weighting and selection problem

3.2 Genetic Rule and Classifier Construction Environment

GRaCCE is a data-mining tool that uses evolutionary search techniques [24] to mine classification

rules from the data given. It is similar to a pattern recognition algorithm, but goes beyond by producing

understandable rules used in the recognition. GRaCCE is designed for use with samples in a vector form

[25]. The individual elements in the vector are independent features, which may be real-values or discrete.

Getting data into this form is the primary goal of the first step in the data mining process.

Once the data is in the proper form, GRaCCE employs a pre-processing phase that includes an

optional feature selection operation and/ or a mandatory winnowing operation. Winnowing removes

statistical outliers and duplicate samples resulting in classes of data that are linearly separable. GRaCCE

then selects the relevant data sets for training through either a random sampling of data or a cross-

validation method. Next, it executes a data-mining algorithm that can be viewed as a combination of

clustering and classification, since it forms a classification model of data based on data attributes that

include the clustering of class homogeneous regions. The steps that the data-mining algorithm follows

sequentially are: partition generation, data set approximation, region identification, region refinement, and

partition simplification. Worst case analysis by section is shown in Table 2, where n is the number of

samples and d is the number of features. The results of the data-mining algorithm are finally interpreted and

evaluated through a listing of partitions that form these regions in the data.

 25

MODULE COMPLEXITY

Pre-processing – Feature Weighting O(n2 + kn)

Pre-processing – Feature Selection O(n2 + kn)

Pre-processing - Winnowing O(dn2d)

Partition Generation O(2(dn)2 + nd)

Data Set Approximation O(nlog(n))

Region Identification O(qn2d3/2)

Region Refinement O(dnlog(n))

Partition Simplification O(d2n2log(n))

Table 2 Worst Case Time Complexity Analysis of GRaCCE

At the top level is the root GRaCCE process gracce. GRaCCE has three main modules at the

second level along with the load module. The load module is used to read in the data set to train the KNN

classifier prior to any of the other modules being called. The first of four main modules is the feature-

weighting module. The other three modules are feature selection, winnow and ruleInd. The rule induction

module makes the most extensive use of the rest of the GRaCCE code and calls the five other modules. The

ga module provides method for both the feature selection routines along with the region ID section of the

rule induction phase [34]. For further information about GRaCCE see Appendix A.

3.2.1 Objective vs. Fitness Structure

Most evolutionary computation (EC) algorithms require some form of encoding or mapping [26]

between the problem domain and the algorithm domain. The evolutionary operators operate on these

encoded structures sometimes called chromosomes. GRaCCE uses either binary or real value string

representation for each population member with a length determined by the number of features in the data

set. In the feature selection process each feature is represented by a single binary digit. On the other hand

for feature-weighting process each weight is associated with each feature is represented by a real value

digit. Feature selection can be thought as a special implementation of feature weighting where weights take

only the values of 0 and 1. For feature selection process a one represents the feature is present and a zero

represents the feature is absent. For feature weighting process a value other than zero represents the feature

 26

is present and has this value as its weight in labeling the associated class, and a zero represents as in feature

selection process that the feature is absent.

The fitness landscape [27] for an EC algorithm refers to the result of the mapping between the

genomes of a population of individuals to their fitness and a graphical representation of that mapping. For

GRaCCE, each population member is evaluated using the objective function in either the feature selection

or the feature weighting code. The objective function performs a k-nearest neighbor (kNN) routine over a

subset of data for each member on the population. The subset is determined by the bit representation of the

individual member.

GRaCCE’s fitness function gets the results of the objective function and finds the k-nearest

neighbors of the unknown instance (each gene in the chromosome represents a feature) according to the

calculated distances on each feature dimension. The new algorithm does not sort the calculated distances to

find the smallest k distance values and their associated classes. Since k is usually a very small integer

number, instead of sorting (sorting is expensive and inefficient since if there are n examples, n-1 distance

values have to be sorted and since n is often a large integer number it is a huge bottleneck when this sort

operation is called many times), the distance matrix is searched for the first smallest distance value and

when found this distance value and its associated class label is read and the class number in the class matrix

is incremented and then the distance matrix is searched for the second smallest distance value, but before

starting the second search the first minimum distance value is changed to infinity to prevent finding the

same distance value again. This operation continued for k times until the smallest k distance value is found

and their associated class labels are read. The class, which has the majority in the class matrix, is selected

as the class label of the unknown instance. Then the confusion matrix is built to evaluate the performance

of any chromosome (feature vector). The values on the diagonal of the confusion matrix shows the number

of correctly classified classes and the values out of diagonal of the matrix shows the number of

misclassified classes by the chromosome that is being evaluated. The fitness value of a chromosome is

calculated after this step and the percentages of misclassified classes to total number of classes in the

system gives the classification error rate of any chromosome and this value is the fitness value of a feature

 27

subset that is being evaluated. The objective score for a particular member does not change for the entire

execution of the genetic algorithm (GA) as long as its binary string remains unchanged. However, the

fitness of that member is recalculated and may change with each generation. The fitness landscapes for data

Fisher’s Iris dataset (Iris dataset is explained in Chapter 5 in detail) under original and noise added

conditions to these data sets are shown in Figure 7, Figure 8, Figure 9 and Figure 10. Please see Appendix

A. for the landscapes of other real-world data sets.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Iris Data Set Using Binary-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 5 Fitness Landscape for Iris Data Set Using Binary-sGA

 28

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Iris Data Set Using Weighted-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 6 Fitness Landscape for Iris Data Set Using Weighted-sGA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Iris (Noise Added) Data Set Using
Binary-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 7 Fitness Landscape for Iris (Noise Added) Data Set Using Binary-sGA

 29

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Iris (Noise Added) Data Set Using
Weighted-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 8 Fitness Landscape for Iris (Noise Added) Data Set Using Weighted-sGA

3.3 Chapter Summary

In this chapter we explained our design methodology and introduced detailed information about

the Genetic Rule and Classifier Construction Environmnet (GRaCCE). We also introduced the objective

and fitness landscape of our sGA algorithm for weighted classification and binary classification.

 30

IV. Implementation

4.1 Introduction

This chapter discusses the implementation of chromosome encoding, genetic algorithm operators,

proposed the repair algorithms and proposed objective and fitness functions.

4.2 GRaCCE Environment

GRaCCE is developed under Microsoft Visual C++ Version 6.0. GRaCCE mainly uses dynamic

memory allocation and for that purpose TNT library is integrated into GRaCCE. This library controls every

dynamic memory allocation. TNT library is developed according to object-oriented method. When the

dynamic memory array object is created, the object constructor is called and if requested memory is

allocated. The memory is not allocated to an array object until the memory is requested by the command:

Object = Object.newsize(row_size, col_size)

The memory is deallocated automatically when the object goes out of scope. For example, if the

object created in a function, the memory is automatically deallocated for this array object automatically

when the operation returns to the calling function.

Since Visual C++ does not support Garbage Collection inherently as Java supports, using TNT

Matrix Library overcomes this disadvantage of Visual C++.

The initial population for either weighted-sGA or binary-sGA is initialized by using Visual C++

Version 6.0 random number generator, and then for other operations such as selection, crossover and

mutation, a uniformly distributed random generator used as explained in Appendix C.

4.3 Loading the Data Set

To be able to load the original datasets into GRaCCE environment, the data sets has to be

formatted into correct format that is suitable for the GRaCCE. Since GRaCCE accepts only numeric values,

 31

if there are any non-numeric values in the original datasets, they have to be formatted into correct format.

GRaCCE assumes that in the first column of the each dataset there is the class label for each instance and

the remaining columns are the feature columns. Each row in the datasets describes an instance. When the

dataset is loaded into GRaCCE environment, the original dataset is read row by row by using Microsoft

Visual C++ command “getline”. This command ensures that each row is read as a whole, and then each

row is stored into an array of linked list queue. After the reading of the original dataset is finished and all

data in the original dataset is stored into an array of linked list queue, the array of linked list is transformed

into an globally defined dataset matrix. This matrix remains constant until the end of the program execution

is stopped.

After the data set is loaded into GRaCCE environment by load module, the original dataset is first

normalized. There are three different normalization (explained in Chapter 2) method for this purpose as

shown in Table 3.

Min-max normalization

z-score normalization

Normalization by decimal scaling

Table 3 Normalization Techniques used in GRaCCE

Normalization of the original dataset is followed by the division of the normalized original dataset

into training set and test set. The normalized original dataset is divided into training and test set according

to user specified division rates and usually the rate for training set is given greater than rate for the test set.

4.4 Encoding Scheme

Although the actual encoding scheme is same for both weighted-sGAS and binary s-GA, the goal

of the encoding for two algorithms is different. The encoding of the chromosomes for binary-sGA is

selected as a way that the each gene in the chromosome shows if feature is selected or not, and the

encoding of the chromosome for weighted-sGA is selected as a way that each gene in the chromosome

 32

shows if the feature is important or not. If the feature is important it has the highest weight and if the

feature is not important the feature has zero weight end eventually is not selected. The length of

chromosomes in both algorithms is equal to the number of original features in the problem dataset. Figure

11 shows the proper encodings for two algorithms.

Figure 9 (a) Encoding in a binary-SGA (b) Encoding in a weighted-sGA

The binary encoding of the chromosome in binary-sGA makes it suitable for the original sGA

operators. For example the crossover operators such as one-point crossover and two-point crossover can

easily be implemented for binary encoding and the inversion mutation also can be easily implemented on a

binary chromosome. This is the most important advantage of the binary-value chromosome over a real-

value chromosome. The crossover and mutation operators are easier and simpler in binary encoding. The

other advantage of binary encoding is that the crossover and mutation operators don’t produce any

infeasible chromosomes while searching for the solution of the feature subset selection problem. But

having these advantages don’t necessarily mean that binary encoding could be used to search the solution

to every problem.

The real-value encoding is used for weighted-sGA and it is necessary that this encoding does not

produce any infeasible chromosomes during the search of the solution. For the feature weighting and

 33

selection problem a chromosome is said to be feasible if the sum of all weights is equal to 1 and this is

shown below:

1w W
n

1i
i ==∑

=

Where wi represents the ith gene and it’s value in the chromosome and W represents the sum of all

weights in a chromosome.

But as long as crossover and mutation operators are used, infeasible chromosomes are inevitable

during the search process. The solution to this problem is using repair algorithms as explained in Chapter 2.

Figure 12 shows infeasible offspring chromosomes produced by one-point crossover of two parents. Before

the one-point crossover operation the chromosomes are feasible but after the one-point crossover operation

the new chromosomes are infeasible and the fitness values calculated for these chromosomes does not

represent a correct result. The solution to this problem is sending these chromosomes to a repair algorithm

and changing then to feasible chromosomes.

Figure 10 Infeasible children after one-point crossover

(4.1)

 34

4.5 The Repair Algorithm

The repair algorithm we use is shown below. The algorithm adds each gene value to calculate the

total sum weight for any chromosome. The algorithm then divides each gene with this sum. The algorithm

guarantees that 0< wi ≤1 and W = 1. Figure 13 shows the feasible chromosomes for the previous example.

Input: Idata, input row vector or chromosome, which is infeasible

Output: Odata, output vector or chromosome, which is feasible

Variables:

LIND: # of genes in a chromosome

Sumx: Sum of gene values

1. ∑
=

=
LIND

i
iIdataSumx

1
][

2. for i←1 to LIND

 3. Odata[i]=Odata[i] / Sumx

4. return Odata

Figure 11 Feasible Chromosomes After Repair Function

 35

4.6 GRaCCE Process Diagram

The overall execution processes of the binary-sGA and weighted-sGA are shown in Figure 14 and

15 respectively. As you can see the only difference between two algorithms is the Repair Function called

for weighted-sGA.

Figure 12 Binary feature subset selection using a simple genetic algorithm with GRaCCE

 36

Figure 13 weighted feature subset selections using a simple genetic algorithm with GRaCCE

 37

4.7 Objective Function And Fitness Function

The fitness function for our algorithm uses the results of the objective function to calculate the

fitness values for each weight set in the weighted-sGA implementation or for each feature subset in the

binary-sGA implementation. The objective function is simply the combination of the KNN classifier and

the confusion matrix.

Since each gene represents a feature either as a weight or feature representation, if the value of a

gene is zero, it means that the feature this gene is representing is not selected for the classification (i.e.

original feature size is reduced.). Since each chromosome in the sGA represents a possible solution to

feature weighting or future subset selection, KNN classifier must evaluate each chromosome’s

classification performance. For each chromosome in the population, KNN classifier is called. Each

chromosome is multiplied with the standardized or normalized feature values in the training set or test set.

This process is only called for one chromosome when test set is used and this chromosome is the best

chromosome found in the training process of the KNN classifier. Multiplying the original instances and

their feature values with either weight chromosomes or binary chromosomes produces a new feature space

which has either scaled in each feature dimension or reduced in feature size. The instances are kept

unchanged but their representations on the feature space are modified to speed the learning process of the

KNN classifier and to decrease the classification error rate for each instance on the original data set. Each

time KNN classifier chooses one instance from the modified temporary dataset as an unknown instance

(Originally this instance is known but we are looking especially for the performance of feature weight or

feature subset multiplied by this instance and the other instances in the dataset) and the others as known

instances. Then KNN classifier calculates the distance from unknown instance to other known instances in

the training dataset. Each times the distance between unknown instance and known instance is calculated,

the calculated distance and the class of the known instance to whom distance calculated is stored in a

nearest neighborhood list (nnlist). The nearest neighborhood list is a vector of structure type and defined

using Microsoft Visual C++ 6.0 structure definition. The variables this structure has is given as follow:

 38

struct Shared::nnlist{

int myclass;

real distvalue;

Subscript index;};

After the distance from unknown instance to other known instances is calculated and the nearest

neighborhood list is built for all known instances, the nearest neighborhood list is searched for the k

smallest distance values. Each time a minimum distance value is find in the nearest neighborhood list, the

associated class value is read and the value of this class is incremented in the class (instance) counter

matrix (ccnt). Each row in the class counter matrix represents a different class in the training set. For

example if there were 3 different clusters in the training set, the size of the class counter matrix would be 3.

When the minimum distance is found in the nearest neighborhood list, the class of this distance is read and

it’s associated class counter is incremented in the class counter matrix, the distance value for this distance

is changed to infinity (i.e. a while which cannot be a minimum value) for not selecting the same nearest

neighborhood list element again. After the nearest neighborhood list is read to find the minimum k-nearest

neighbors to unknown instance and the class counter matrix for each k-nearest neighbor is modified

according to their class values, the maximum value in the class counter matrix is found and the unknown

instance is labeled as this class, which is the majority class in the class counter matrix. Since we are looking

for the majority in the class counter matrix, to prevent the tie, k should be chosen with care. If there is a tie

among classes, the smallest class is always chosen. But this bias toward the smallest class sometimes can

produce inefficient results. Normally there is no unknown instance in the training set but by assuming each

time a known instance as an unknown instance, and assuming the other instances as known instances we

are evaluating our sGA chromosomes’ performances in the classification process. A map vector is defined

whose row size is equal to n where n is equal to the number of instances in the training dataset. Map vector

is a column vector and each row in the map vector represents an instance in the training set. After

calculating the class label for an unknown instance, the class label is written into the row of the map vector

 39

pointing to the unknown instance. As you can see this map vector holds the predicted class labels for each

instance in the training set. The most important process of the KNN Classifier is building this map vector

according to sGA weight or feature chromosomes multiplied by the instance feature values.

The next process in the classification is building the confusion matrix using the predicted class

labels in the map vector and using the class labels in the original training set. Each row in the confusion

matrix points to a different class labels in the original training set (0=class 0, 1- class 1....), and each

column in the confusion matrix points to the predicted values of each class in the original set. Normally, if

we have 100% classification accuracy which means the class of each instance in the training set is correctly

classified, then the confusion matrix has non-zero values only on the diagonal, and zero value elsewhere.

The non-zero values out of the diagonal of the confusion matrix show how many times a specific class is

wrongly predicted during the classification process. For example, Let’s assume that we have 4 classes from

class1 to class4 and class 1 has 5 instances, class 2 has 10 instances, class 3 has 15 instances and class 4 has

20 instances. The results of a KNN classification for an sGA chromsome are shown in Figure 17. As you

can see from Figure 15, the sum of each row in the confusion matrix is equal to the total number of

instances for each class in the original set. The results show that out of 5 instances, one instance that

belongs to class 1 is assigned to class 4 by a result of wrong prediction. The other for instances of the class

1 is correctly labeled with class 1. Out of 10 instances two instances that belong to class 2 are labeled as

class 1 and class 3 respectively. Out of 15 instances one instance that belongs to class 3 is labeled as class 2

and the other 14 instances are correctly classified. Out of 20 instances two instances that belong to class 4

are labeled as class 3 and other 18 instances are correctly classified.

 1 2 3 4

1 4 0 0 1

2 1 8 1 0

3 0 1 14 0

4 0 0 2 18

Figure 14 Confusion Matrixes

 40

The last process in the objective function of the GRaCCE is the calculation of the percentage of

the misclassification rate for the sGA chromosome for which the confusion matrix is built. The

misclassification percentage is calculated as follows:

Misclassification rate = # of classes misclassified / total number of classes

Let’s show this in our previous example,

 Total number of classes = # of class 1 + # of class 2 + # of class 3 + # of class 4

 = 5 +10 +15 +20

 = 50

Of classes misclassified = # of class 1 misclassified + # of class 2 misclassified

 + # of class 3 misclassified + # of class 4 misclassified

 = 1 + 2 +1 +2

 = 6

Misclassification rate = 6 / 50

Misclassification rate = 0.12

The value of misclassification rate says that the sGA chromosome whose performance is evaluated

has an error rate of 12%. If there were other chromosomes in the population, which has less error rate than

that of this chromosome, then the one, which has the least error rate, would be selected as the best

chromosome (feature weight or feature subset) for this training data set.

The misclassification rate is calculated as a result of the objective function but the actual fitness

function is a combination of the many objective functions. The fitness function must have the ability to

combine many objective functions under only a one function since the sGA algorithm only tries to optimize

the fitness values and there is only one fitness value for each chromosome in the sGA population.

 41

The second objective function for our algorithms is the calculation of the total number of features,

which are either weighted or selected. The reason for doing this is that if there are two weight chromosome

that have the same misclassification rate, the second objective function ensures that the weight

chromosome which weights less features and clean most features is selected as the best chromosome in the

end of weighted-sGA algorithm. The objective function is applied to both weighted-sGA and binary-sGA

algorithm without doing any changes.

 The third objective function for our algorithm the calculation of the total cost for a

weighted or selected feature subset. If two chromosomes have the same classification error rate, our choice

is the one that has the least cost. The sGA algorithm uses this option only the features in a data set has

measurement cost associated with them. If there is no measurement cost for any feature then this objective

function is ignored in the fitness function and fitness value calculation.

Since the chromosomes are evaluated according to their fitness values, we combined each

objective function under fitness function. The fitness function for the sGA algorithm is as follows:

Fitness(x) = errorrate(x) + α*(size(x) + cost(x))

Where x = a chromosome in the sGA population and α is a user specified real value constant and

0<α<1.

If the features do not have any measurement cost than the result of cost (x) is equal to zero. The

value for constant α is chosen as 0.0001 in our algorithm. Since we search for the best feature weight or

feature subset in terms of classification accuracy, it is necessary to adjust α to a very small real value. We

assume that the classification accuracy has the highest importance for us; we want our search be in favor of

classification accuracy other than only reduction in the original feature size or the cost. High values for α

constant changes the search space from searching for the best chromosome that has the least classification

error rate to the searching for the best chromosome that has either less number of features or less cost. Our

algorithm ensures that the selected chromosome has the least classification error rate in term of feature size

 42

and cost it is not guaranteed. But we know that the smallest size for a feature set would be zero and the

cheapest cost for a feature set would be zero too, but this would be a solution to our problem since we need

at least one feature to make classification on unknown instances.

The sGA algorithm still searches for the chromosomes that has less feature size and less cost but

in favor of classification error rate. It is not surprising to have some increase in the cost or the feature size

during the execution of the sGA algorithm, this increases are only due to the reduction in the classification

error rate.

4.8 Stop Criteria

A stop criteria algorithm is implemented to ensure that the classification error rate on the test data

set does not increase while the classification error rate decrease on the train set. If the classification error

rate increases on the test dataset while it decrease on the train dataset, we can say that there is a bias toward

a specific solution (i.e. feature weights or feature subsets) which can no be generalized to test data set or

any validation data set. But since the quality of a feature weight set or feature subset is judged according to

their classification error rate on the test or validation datasets, it is not acceptable to have an increasing

trend in terms of classification error rate on the test dataset.

Input: current, current classification error rate on test dataset; previous, previous classification

error rate on test data set; counter, counter is incremented each time when the current classification error

rate on test dataset is higher than the previous classification error on test dataset; threshold, userd specified

value.

Output: False or True

 43

Figure 15 Stop Criteria Algorithm for Weighted-sGA and Binary-sGA Algorithms

The stop criteria algorithm shown in Figure 17 guarantees that the trend of increase on the

classification error rate for test data set cannot exceed the user specified threshold value. In our algorithm

this threshold value is specified as 10.

4.9 Chapter Summary

In this chapter we explained the execution process of our sGA algorithm and loading of the

datasets onto GRaCCE environment, encoding scheme we have chosen in our sGA algorithm, the fitness

function used to evaluate the quality of each individual in the population, repair algorithm we used to

modify the infeasible chromosomes and we explained the stopping criteria we implemented for more

accurate solution to out problem area.

 44

V. Design Of Experiments and Analysis

5.1 Introduction

This chapter discusses the goal expected from the experiments, the performance metrics,

experiment parameters, the datasets used in the experiments and the method of analysis for the results.

5.2 Goal of the Experiment

The goal of this study is to analyze the performance of GRaCCE in terms of classification

accuracy by using feature weighting technique and binary feature subset selection technique. These two

techniques are compared in terms of their classification accuracy rate. The overall performance of the

GraCCE is also compared with those of other Classification algorithms. The system under test is GRaCCE

and the component under test is weigted-sGA and binary-sGA algorithms.

5.3 System Services

The service we expect from our system is to classify unknown instances, calculate the distances of

each feature to other features and calculate the classification accuracy rates for data sets presented to the

system where the system is GRaCCE. The possible outcomes that we expect from GRaCCE is to exhaust

the number of GA generations specified at the beginning of feature weighting and selection process, or to

stop execution at an early stage when the specified stopping criteria is reached-in our case defined as

having worse classification rate for test data set when the number of generation reaches 10. This value is

empirical and can be changed according to user request.

5.4 Performance Metric

The only performance metric we used to evaluate the performance of the GRaCCE is the

classification error rate found by GRaCCE for different data sets. But there are other metrics such as

distance metrics used by the KNN classifier and in that case this distance metric is Euclidean distance to

 45

calculate the distances between features on the same dimension. Another metric is the “cost” metric for

measuring a feature to describe a class or pattern. We did not use this metric since we do not know the cost

of measurement for all features used in the experiments.

5.5 Experiment Parameters

There are two types of parameters in our experiments that need to be explained. These parameters

are hardware and system parameters. The hardware parameters are the CPU clock rate, size of memory,

type of network interconnection and the operating system used during the experiments. The system

parameters are the selection mechanism of GA for breeding new individual, the probability of crossover

and mutation operators, types of crossover and mutation operators used during experiments and the value

of K for KNN classifier and the percentages of the training and test data sets. The number of individuals in

the GA population and the number of generations that the GA has to be run are the other system

parameters.

The Experiment Environment is shown in Table 4.The Experiment Environment

CPU Intel Pentium 4 2GHz

RAM Memory 1024MB

Operating System Microsoft Windows 2000

Professional Edition

Programming Language Microsoft Visual C++ Version 6.0

Table 4 Experiment Environments

The sGA Algorithm parameters that we used in our experiments are explained in

Table 5.

Of Generation 60
Population Size 30
Crossover probability 1.0
Mutation probability 0.1
The value of K 1
The percentage of training set 0.70
The percentage of test set 0.30

Table 5 The Value of GRaCCE Parameters For the Experiments

 46

The values shown in Table are decided upon many preliminary experiments and kept constant at

the time of experiments.

As a selection operator, “linear ranking” method is used. The crossover and mutation operators

used in the experiments are two-point crossover operator and exchange mutation respectively for weighted-

sGA experiments and binary two-point crossover operator and inversion mutation operators for binary-sGA

are used. Since it is not possible to invert a real value in the case of inversion mutation, different mutation

operators are implemented for these two algorithms.

We used 15 real world-datasets, which have different number of characteristics. Some datasets

have small number of features and classes (e.g. Iris dataset has only 4 features and 2 classes), Some

datasets have large number of features and classes (e.g. Pilot dataset has 108 features). We did not make

any assumption about the distribution of datasets. We designed a full factorial experiment with 10

replications for each dataset. Since we use 15 datasets it gives us 15*10=150 experiments for only one

algorithm. Since we are evaluating the performance of two different algorithm, for each algorithm we

design 240 experiments which gives us a total number of 2*150=300 experiments.

 We used two different evaluation techniques together, which are statistical analysis and

simulation. The workload used for the system was changed according to the size of the data sets used in our

experiments.

Our research hypothesis is that in addition to feature subset selection, assigning weights to the

selected features increases the classification accuracy than that of feature subset selection which assigns

weights to features either zero or one instead of real values. The null hypothesis is the negation of our

alternative hypothesis that is there will be no increase on classification accuracy via feature weighting and

feature selection. According to statements given we can formulate our hypothesis as follows:

H1: Classification accuracy of feature weighting ≥ Classification accuracy of feature subset

selection

 47

H0: Classification accuracy of feature weighting < Classification accuracy of feature subset

selection.

H1: µfeature weighting ≥ µfeature selection

H0: µfeature weighting < µfeature selection

Where

µ = the mean of classification accuracy.

We use significance testing technique to decide whether we can reject the null hypothesis or not.

For this purpose we calculate the sample mean of our experiments for classification accuracy and the

standard deviation. Let’s give an example:

Let’s say for the Fisher’s IRIS data set the mean of the previous 16 experiments for classification

accuracy is 94.7 with a standard deviation of 3.2. The current study has a mean of 96.4 for classification

accuracy with a standard deviation of 0.72. To see if there is enough difference to cause us to reject H0, we

find the P value for the test. That is, we compute the probability of observing a sample mean of 96.4 or

larger if µ = 94.7 and σ = 3.2, then the test statistic X is, by Central Limit Theorem, at least approximately

normally distributed with mean µ = 94.7 and standard deviation σ/√n = 3.2/4 = 0.8. Therefore

P[X ≥ 96.4 | µ = 94.7 , σ = 3.2] = 1-P[Z ≤ 2.125] = 1-.9832 = 0.0168 from Standard Normal

Table[28]

There are two explanations for this very small probability. The null hypothesis is true and we have

observed a very rare sample that by chance has a larger sample mean; the null hypothesis is not true and the

new classification technique which is the combination of the feature weighing and feature selection,

resulted in a higher mean of classification accuracy. So we shall reject H0, and report that the P value of our

test id 0.0168.

 48

Another technique that we used to analyze our results is zero mean testing [27]. A common use of

confidence intervals is to check if a measured value is significantly different from zero. When comparing a

random measurement with zero, the statements have to be made probabilistically, that is, at a desired level

of confidence. If the measured value passes our test of difference with a probability greater than or equal to

the specified level of confidence, 100(1 - α)%, then the value is significantly different from zero. The test

consists of determining a confidence interval and simply checking if the interval includes zero. If the

confidence interval does not include zero then we can say that one system is superior to the other, but if

confidence interval includes zero, and therefore, the measured values are not significantly different from

zero, so the compared systems are not significantly different at that confidence level.

The experiments we report here used real world data sets. We obtained the real-world data sets

from the machine-learning repository at the University of California, Irvine

(http://www.ics.uci.edu/AI/ML/MLDBRepository.html)

Our objective with real-world data sets was to compare the performance of weighted sGA in terms

of classification accuracy with that of binary-sGA. Some medical data sets include measurement costs for

the features, but most sets lack this information. Thus, our experiments focused on only identifying a

minimal subset of features and their associated weights to yield high classification accuracy KNN classifier

using sGA algorithm for all data sets. But further studies can take these costs into consideration and

develop a new fitness function that evaluates also the cost of each feature in the classification problem and

selects the individuals which provides not only high classification accuracy but also less cost for the

classification of unknown patterns.

Total number of data sets used in the experiments is 15 and 13 of these datasets are shown in

Table 4, and each data set has similar and different characteristics. The FLIR (Scud) and PILOT datasets

are unclassified datasets used to perform target recognition of SCUD missiles and behavior recognition of

PILOTS respectively. Some data sets include numeric values, some data sets include nominal values, and

some datasets include both values. A set of data is said to be nominal if the values/ observations belonging

to it can be assigned a code in the form of a number where the numbers are simply labels. You can count

 49

order or measure nominal data. For example, in a data set males could be coded as 0, females as 1; marital

status of an individual could be coded as Y if married, N if single. Also some datasets like hepatitis and

vote datasets have missing values in their some features, which has to be taken into consideration while

evaluating their classification accuracy rate.

10 Experiments are conducted for each algorithm (weighted-sGA and binary-sGA) on training set

to find the classification accuracy of selected feature set and also the classification accuracy rate of this

selected feature set is calculated on test set to see the effect of reduced set, since the quality of a reduced

feature set is usually judged upon the test set or unknown future examples.

DATA
SET

DESCRIPTION SIZE INPUT
FEATURES

FEATURE TYPE OUTPUT
CLASSES

Cancer Breast Cancer 699 9 Numeric 2

Flag Flag Database 194 28 Numeric, nominal 8

Glass Glass identification 214 9 Numeric 6

Hepatitis Hepatitis domain 155 19 Numeric, nominal 2

Iono Ionosphere structure 351 34 Numeric 2

Liver Liver disorders 345 6 Numeric 2

Pima Pima Indians
diabetes

768 8 Numeric 2

Sonar Sonar Classification 208 60 Numeric 2

Soybean Large soybean 307 35 Nominal 19

Votes House votes 435 16 Nominal 2

Wine Wine recognition 178 13 Numeric 3

Tic-tac-toe Tic-tac-toe game 958 9 Nominal 2

Iris Iris Plant Database 150 4 Numeric 3

Table 6 Data Sets used in the experiments

 50

5.6 Data Sets Used In the Experiments

Iris: This is perhaps the best-known database to be found in the pattern recognition literature.

Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for

example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris

plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each

other. Number of instances is 150 (50 in each of three classes). There are 4 numeric predictive attributes

and the class in the database. The attributes are sepal length in cm, sepal width in cm, petal length in cm,

petal width in cm and the classes are Iris Setosa, Iris Versicolour, and Iris Virginica. There are no missing

attribute values.

Summary Statistics
 Min Max Mean StdDev Class Correlation

Sepal
length

4.3 7.9 5.84 0.83 0.7826

Sepal width 2.0 4.4 3.05 0.43 -0.4194
Petal length 1.0 6.9 3.76 1.76 0.9490(high!)
Petal width 0.1 2.5 1.20 0.76 0.9565 (high!)

Table 7 Summary Statistics For Fisher's Iris Database

As you can see from Table 7, third and fourth features are highly correlated and the

feature subset selection algorithm has to select these two features for classification of the Iris plant. In

Figure 15, the original class distribution is shown using the feature 1, feature 2 and feature 3, feature 4.

There are 33.3% from each of 3 classes.

 51

Class Distribution For Iris DataBase

0

1

2

3

4

5

0 2 4 6 8 10

Sepal Length

Se
pa

l W
id

th

Iris-Setosa
Iris-VersiColor
Iris-Virginica

Figure 16 Class Distribution For Iris Database (Feature 1, Feature 2)

Class Distribution For Iris Database

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8
Pedal Length

Pe
da

l W
id

th

Iris-Setosa
Iris-Versicolor
Iris-Virginica

Figure 17 Class Distributions for Iris Database (Feature 3, Feature 4)

Glass: The study of classification of types of glass was motivated by criminological investigation.

At the scene of the crime, the glass left can be used as evidence...if it is correctly identified! There are 214

instances and 10 attributes (including an id#) plus the class attribute and all attributes are continuously

valued. The 10 attributes are, Id number from 1 to 214, refractive index, Sodium, Magnesium, Aluminum,

 52

Silicon, Potassium, Calcium, Barium, Iron. There are 6 classes (types of glasses) as

building_windows_float_processed,

building_windows_non_float_processed,vehicle_windows_float_processed,

vehicle_windows_non_float_processed (none in this database), containers, tableware, and headlamps.

There are no missing attribute values. There are 163 window glasses and 51 non-window glasses. The

detailed information about glass distribution can be found from the machine-learning repository at the

University of California, Irvine.

Tic-tac-toe: This database encodes the complete set of possible board configurations at the end of

tic-tac-toe games, where “x” is assumed to have played first. The target concept is “win for x” (i.e., true

when “x” has one of 8 possible ways to create a “three-in-a-row”). Interestingly, this raw database gives a

stripped-down decision tree algorithm (e.g., ID3) fits. However, the rule-based CN2 algorithm, the simple

IB1 instance-based learning algorithm, and the CITRE feature-constructing decision tree algorithm perform

well on it. Number of Instances is 958 (legal tic-tac-toe endgame boards), number of attributes is 9 (each

corresponding to one tic-tac-toe square) and for an attribute “x” means player x has taken, “o” means

player o is taken, and “b” means blank. In our algorithm, we coded the attribute values” x,o,b” with

numeric values 1,0,-1 respectively. Since our algorithm accepts only numeric values, this conversion is

necessary to have feasible solutions. The attribute information is given as follows:

1. top-left-square: {x,o,b}

2. top-middle-square: {x,o,b}

3. top-right-square: {x,o,b}

4. middle-left-square: {x,o,b}

5. middle-middle-square: {x,o,b}

6. middle-right-square: {x,o,b}

7. bottom-left-square: {x,o,b}

8. bottom-middle-square: {x,o,b}

9. bottom-right-square: {x,o,b}

10. Class: {positive,negative}

There are no missing attribute values. About 65.3% of instances are positive (i.e., wins for "x").

There are some reported classification accuracy rate for this data set when 70% used as training set and

30% used as test set as follows: NewID: 84.0%, CN2: 98.1%, MBRtalk: 88.4%, IB1: 98.1%, IB3: 82.0%,

IB3-CI: 99.1%

 Soybean: There are 19 classes, only the first 15 of which have been used in prior work. The

folklore seems to be that the last four classes are unjustified by the data since they have so few examples.

There are 35 categorical attributes, some nominal and some ordered. The value “dna”'' means does not

apply. The values for attributes are encoded numerically, with the first value encoded as ``0,'' the second as

 53

“1”and so forth. An unknown values is encoded as ”?’’. There are 307 instances, 35 features (all have been

nominalized) There are 19 classes as diaporthe-stem-canker, charcoal-rot, rhizoctonia-root-rot,

phytophthora-rot, brown-stem-rot, powdery-mildew, downy-mildew, brown-spot, bacterial-blight,

bacterial-pustule, purple-seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf-

spot, diaporthe-pod-&-stem-blight, cyst-nematode, 2-4-d-injury, herbicide-injury.

The features are:

 1. date: april,may,june,july,august,september,october,?.

 2. plant-stand: normal,lt-normal,?.

 3. precip: lt-norm,norm,gt-norm,?.

 4. temp: lt-norm,norm,gt-norm,?.

 5. hail: yes,no,?.

 6. crop-hist: diff-lst-year,same-lst-yr,same-lst-two-yrs, same-lst-sev-yrs,?.

 7. area-damaged: scattered,low-areas,upper-areas,whole-field,?.

 8. severity: minor,pot-severe,severe,?.

 9. seed-tmt: none,fungicide,other,?.

 10. germination: 90-100%,80-89%,lt-80%,?.

 11. plant-growth: norm,abnorm,?.

 12. leaves: norm,abnorm.

 13. leafspots-halo: absent,yellow-halos,no-yellow-halos,?.

 14. leafspots-marg: w-s-marg,no-w-s-marg,dna,?.

 15. leafspot-size: lt-1/8,gt-1/8,dna,?.

 16. leaf-shread: absent,present,?.

 17. leaf-malf: absent,present,?.

 18. leaf-mild: absent,upper-surf,lower-surf,?.

 19. stem: norm,abnorm,?.

 20. lodging: yes,no,?.

 21. stem-cankers: absent,below-soil,above-soil,above-sec-nde,?.

 22. canker-lesion: dna,brown,dk-brown-blk,tan,?.

 23. fruiting-bodies: absent,present,?.

 24. external decay: absent,firm-and-dry,watery,?.

 25. mycelium: absent,present,?.

 26. int-discolor: none,brown,black,?.

 27. sclerotia: absent,present,?.

 28. fruit-pods: norm,diseased,few-present,dna,?.

 54

 29. fruit spots: absent,colored,brown-w/blk-specks,distort,dna,?.

 30. seed: norm,abnorm,?.

 31. mold-growth: absent,present,?.

 32. seed-discolor: absent,present,?.

 33. seed-size: norm,lt-norm,?.

 34. shriveling: absent,present,?.

 35. roots: norm,rotted,galls-cysts,?.

Zoo : A simple database containing 17 Boolean-valued attributes. The "type" attribute appears to

be the class attribute. Here is a breakdown of which animals are in which type: (I find it unusual that there

are 2 instances of "frog" and one of "girl"!). There are 7 classes as:

Class 1 (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant,

fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink, mole, mongoose,

opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sealion, squirrel,

vampire, vole, wallaby,wolf

Class 2 (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,

penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren

Class 3 (5) pitviper, seasnake, slowworm, tortoise, tuatara

Class 4 (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole,

stingray, tuna

Class 5 (4) frog, frog, newt, toad

Class 6 (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

Class 7 (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish, worm

There are 101 instrances and 18 features (animal name, 15 boolean attributes, 2 numeric). There are no

missing values and he attributes are:

1. animal name: Unique for each instance

2. hair Boolean

 3. feathers Boolean

4. eggs Boolean

 5. milk Boolean

 6. airborne Boolean

 7. aquatic Boolean

 8. predator Boolean

 9. toothed Boolean

10. backbone Boolean

 55

 11. breathes Boolean

 12. venomous Boolean

 13. fins Boolean

 14. legs Numeric (set of values: {0,2,4,5,6,8})

 15. tail Boolean

 16. domestic Boolean

 17. catsize Boolean

 18. type Numeric (integer values in range [1,7])

Hepatitis: There are 155 instances and 20 features including class attribute. There are 2 classes as

DIE or LIVE. The features are:

1. Class: DIE, LIVE

2. AGE: 10, 20, 30, 40, 50, 60, 70, 80

3. SEX: male, female

4. STEROID: no, yes

 5. ANTIVIRALS: no, yes

6. FATIGUE: no, yes

 7. MALAISE: no, yes

 8. ANOREXIA: no, yes

 9. LIVER BIG: no, yes

10. LIVER FIRM: no, yes

 11. SPLEEN PALPABLE: no, yes

12. SPIDERS: no, yes

13. ASCITES: no, yes

14. VARICES: no, yes

15. BILIRUBIN: 0.39, 0.80, 1.20, 2.00, 3.00, 4.00

16. ALK PHOSPHATE: 33, 80, 120, 160, 200, 250

17. SGOT: 13, 100, 200, 300, 400, 500,

 18. ALBUMIN: 2.1, 3.0, 3.8, 4.5, 5.0, 6.0

19. PROTIME: 10, 20, 30, 40, 50, 60, 70, 80, 90

 20. HISTOLOGY: no, yes

There are many missing values.

 56

 Votes: This data set includes votes for each of the U.S. House of Representatives Congressmen on

the 16 key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired

 for, and announced for (these three simplified to yea), voted against, paired against, and announced

against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and did

not vote or otherwise make a position known (these three simplified to an unknown disposition).

There are 435 instances (267 democrats, 168 republicans). There are 16 features plus class

attribute. The attributes are:

1. Class Name: 2 (democrat, republican)

2. handicapped-infants: 2 (y,n)

3. water-project-cost-sharing: 2 (y,n)

 4. adoption-of-the-budget-resolution: 2 (y,n)

 5. physician-fee-freeze: 2 (y,n)

 6. el-salvador-aid: 2 (y,n)

 7. religious-groups-in-schools: 2 (y,n)

 8. anti-satellite-test-ban: 2 (y,n)

 9. aid-to-nicaraguan-contras: 2 (y,n)

10. mx-missile: 2 (y,n)

11. immigration: 2 (y,n)

12. synfuels-corporation-cutback: 2 (y,n)

13. education-spending: 2 (y,n)

14. superfund-right-to-sue: 2 (y,n)

15. crime: 2 (y,n)

16. duty-free-exports: 2 (y,n)

17. export-administration-act-south-africa: 2 (y,n)

There are a few missing values.

Flag: This data file contains details of various nations and their flags. In this file the fields are

separated by spaces (not commas). With this data you can try things like predicting the religion of a

country from its size and the colors in its flag. 10 attributes are numeric-valued. The remainders are either

Boolean or nominal-valued.

There are 194 instances and 30 features. The attributes are:

1. name Name of the country concerned

2. landmass 1=N.America, 2=S.America, 3=Europe, 4=Africa, 4=Asia, 6=Oceania

3. zone Geographic quadrant, based on Greenwich and the Equator 1=NE, 2=SE, 3=SW, 4=NW

 4. area in thousands of square km

 57

5. population in round millions

6. language 1=English, 2=Spanish, 3=French, 4=German, 5=Slavic, 6=Other Indo-European,

7=Chinese, 8=Arabic, 9=Japanese/Turkish/Finnish/Magyar, 10=Others

7. religion 0=Catholic, 1=Other Christian, 2=Muslim, 3=Buddhist, 4=Hindu, 5=Ethnic, 6=Marxist,

7=Others

8. bars Number of vertical bars in the flag

 9. stripes Number of horizontal stripes in the flag

10. colours Number of different colours in the flag

11. red 0 if red absent, 1 if red present in the flag

12. green same for green

13. blue same for blue

14. gold same for gold (also yellow)

15. white same for white

16. black same for black

 17. orange same for orange (also brown)

18. mainhue predominant colour in the flag (tie-breaks decided by taking the topmost hue, if that

fails then the most central hue, and if that fails the leftmost hue)

19. circles Number of circles in the flag

20. crosses Number of (upright) crosses

21. saltires Number of diagonal crosses

22. quarters Number of quartered sections

23. sunstars Number of sun or star symbols

24. crescent 1 if a crescent moon symbol present, else

 25. triangle 1 if any triangles present, 0 otherwise

26. icon 1 if an inanimate image present (e.g., a boat), otherwise 0

27. animate 1 if an animate image (e.g., an eagle, a tree, a human hand) present, 0 otherwise

28. text 1 if any letters or writing on the flag (e.g., a motto or slogan), 0 otherwise

29. topleft colour in the top-left corner (moving right to decide tie-breaks)

 30. botright Colour in the bottom-left corner (moving left to decide tie-breaks)

Table 8 shows the full list datasets that can be obtained from Irvine Repository.

 58

DATASET DESCRIPTION # OF INSTANCE # OF FEATURES # OF CLASSES

Annealing Annealing Data 798 38 6

Audiology Audiology Database 226 ??? 24

Auto Auto Imports Database 205 26 -

Bridges Pittsburgh bridges 108 13 -

CPU

Performance

Relative CPU

Performance Data

209 10 -

Echocardiagram Echocardiogram Data 132 13 2

Heart Heart Disease

Databases

303 (Cleveland

database)

76 -

Image Image Segmentation

data

210 + 2100 19 7

Kinship Kinship domain

(relational)

104 12 -

Lenses Database for fitting

contact lenses

24 4 3

Letter

Recognition

Letter Image

Recognition Data

20000 17 26

Liver BUPA liver disorders 345 7 -

Mushroom Mushroom Database 8124 22 2

Shuttle Landing Space Shuttle Auto

landing Domain

15 7 2

Thyroid Thyroid disease 9172 29 6

University Lebowitz's Universities

Database

285 17 -

Waveform Waveform Database

Generator (written in C)

5000 21 3

Protein Secondary Structure of

Globular Proteins

- - -

Table 8 Real-World Datasets in Irvine Repisotory

 59

5.7 Chapter Summary

In this chapter we explained our design of experiments and the analysis. We gave our justification

for the experiment parameters and sGA parameters such as crossover and mutation probability, method of

selection etc. We also explained the real-world datasets used in our experiments.

The analysis and interpretation of our results is given in Chapter 6.

 60

VI. EXPERIMENT RESULTS

6.1 Introduction

This chapter presents the results of our experiments for real-world datasets using weighted-sGA

and binary-sGA. For the calculation of our results the average of 15 experiments are calculated for

weighted sGA and binary sGA. The plots show the performance of each algorithm for each real-world

dataset in terms of their classification accuracy obtained after 10 experiments for each dataset.

Figure 18 shows the average classification accuracy rate of 10 experiments for Cancer dataset on

training set. The resulting classification accuracy rate for weighted classification is better than that of

binary classification on Cancer training set. According to Figure 18, it is clear that binary-sGA converges

rapidly and the convergence is reached around 14th generation but on the other hand the weighted-sGA

converges slower than binary-sGA and according to Figure 18, weighted-sGA converges aroung 55th

generation. This result shows that weighted-sGA has more diverse population and the crossover and

mutation operators produce better individuals in terms of classification accuracy rate.

Classification Accuracy Rate For CANCER
 Data Set

95.6

95.8

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 18 Classification Accuracy Rate on Cancer Train Set For Weighted-sGA andBinary-sGA

 61

Figure 19 shows the average classification accuracy rate for test set of the Cancer dataset.

According to Figure 19, weighted classification has also better classification accuracy than binary

classification on the test data.

But since the number of examples in test set is less than that of training set, and the feature

weights and feature subsets are found according to training set, the classification accuracy rate on test set is

worse than that of training set, and the trend of convergence is also different. As you can see from Figure

19, there is no convergence and different feature weights and subsets have different classification accuracy

rate and the increasing trend of classification accuracy rate toward the end of the sGA generation as in

training set is not applicable to the test set but still we have good classification accuracy rate on test set

since the resulting classification accuracy rate is higher than the beginning classification accuracy rate. WE

can say that the feature weights and feature subset found by sGA algorithm can be generalized to future

unknown examples.

You can see the results for Hepatitis, Iris, Liver, Sonar, Pilot in Figures 20, 21, 22 ,23, 24, 25 ,26,

27, 28, 29, respectively.

Classification Accuracy Rate For CANCER
 Data Set

91.5

92

92.5

93

93.5

94

94.5

95

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 19 Classification Accuracy Rate on Cancer Test Set For Weighted-sGA and Binary-sGA

 62

Classification Accuracy Rate For HEPATITIS
Data Set

87

88

89

90

91

92

93

94

95

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 20 Classification Accuracy Rate on Hepatitis Train Set For Weighted-sGA and binary-sGA

Classification Accuracy Rate For HEPATITIS
 Data Set

76

78

80

82

84

86

88

90

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 21 Classification Accuracy Rate on Hepatitis Test Set For Weighted-sGA and Binary-sGA

 63

Classification Accuracy Rate For IRIS
Data Set

95.2

95.4

95.6

95.8

96

96.2

96.4

96.6

96.8

97

97.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 22 Classification Accuracy Rate on Iris Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For IRIS
Data Set

75

80

85

90

95

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 23 Classification Accuracy Rate on Iris Test Set For Weighted-sGA and Binary-sGA

 64

Classification Accuracy Rate For LIVER
 Data Set

62

63

64

65

66

67

68

69

70

71

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 24 Classification Accuracy Rate on Liver Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For LIVER
 Data Set

53

54

55

56

57

58

59

60

61

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 25 Classification Accuracy Rate on Liver Test Set For Weighted-sGA and Binary-sGA

 65

Classification Accuracy Rate For SONAR
Data Set

82

84

86

88

90

92

94

96

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 26 Classification Accuracy Rate on Sonar Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For SONAR
Data Set

70

71

72

73

74

75

76

77

78

79

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 27 Mean Classification Accuracy Rate on Sonar Test Set For Weighted-sGA and binary-sGA

 66

Classification Accuracy Rate For PILOT (A1)
Data Set

80

82

84

86

88

90

92

94

96

98

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

of Generations

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 28 Classification Accuracy Rate on Pilot (A1) Train Set over For Weighted-sGA and binary-sGA

Classification Accuracy Rate For PILOT (A1)
 Data Set

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

of Generations

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted-
sGA
Binary-sGA

Figure 29 Classification Accuracy Rate on Pilot (A1) Test Set For Weighted-sGA and Binary-sGA

 67

VII. ANALYSIS OF RESULTS

7.1 Introduction

This chapter discusses the results of the experiments for both weighted-sGA and binary sGA. The

results are analyzed according to t-variate method since the number of experiments for each dataset is only

10. Since the number of experiments is not too large, we cannot use central limit theorem and generalize

our results to according to the normal distribution. We calculated the confidence intervals of each algorithm

in terms of classification accuracy for each dataset. We specified two different confidence levels as 90%

and 99% confidence levels during our analysis of the results.

Table 7 shows the classification accuracy of the data sets used in the experiments without feature

reduction.

Data Set Original Feature
Size

Classification Accuracy Rate Without
Feature Reduction

Cancer 9 94.84 ± 1.16
Flag 28 43.28 ± 7.04
FLIR 6 73.68 ± 1.01
Glass 9 69.71 ± 0.63
Hepatitis 19 82.75 ± 1.89
Ionosphere 34 85.40 ± 1.85
Iris 4 94.91 ± 0.46
Liver 6 60.31 ± 3.72
Pima 8 68.11 ± 1.12
Sonar 60 81.52 ± 3.15
Soybean 35 89.85 ± 1.25
Tic-Tac-Toe 9 75.30 ± 1.52
Vote 16 90.39 ± 1.35
Wine 13 73.47 ± 0.84
Pilot (A1) 108 48.95 ± 2.07
Pilot (A2) 108 59.46 ± 1.44
Pilot (A3) 108 51.78 ± 1.80
Pilot (A4) 108 59.16 ± 3.06
Pilot (A5) 108 58.32 ± 2.08

Table 9 Classification Accuracy Rate On Real-World Data Sets Used In the Experiments Without Feature
Selection and Feature Weighting

 68

As you can see from Table 9, when the size of the original feature set is reduced, the classification

accuracy rate increases. The increase in the classification accuracy is dominant when the weighted-sGA is

used. We can say that reducing the number of original features increases the overall classification accuracy

rate but when the selected features are weighted we can have better classification accuracy rate.

Our experiments also show that the classification accuracy rate in test set is less than that of in

training set. This is due to having fewer instances in the test set and doing classification in the training set

and testing the found feature set in the test set. The bias in the training set is causing less classification

accuracy rate in the test set. This is an expected result but the important point is preventing test set

classification accuracy to reach a classification accuracy rate, which is not acceptable by the system user. If

you look at the results on Table 8 for training set and test set, the differences of classification accuracy rate

for two sets are not so significant. We can say that there is not a string bias in the training set classification

process.

 69

Table 10 and 11 shows that at the 90% Confidence level there is a significant difference between

weighted-sGA and binary-sGA. According to this statistics, we reject the null hypothesis defined in early

chapters and accept the alternative hypothesis. We can say that weighted feature subset selection has better

classification accuracy than that of binary feature subset selection.

Classification Accuracy Rate (µ ± σ) for Train Set And Test Set Configurations

Classification on Train Set Classification on Test Set
Weighted Classification Binary Classification Weighted Classification Binary Classification

Data Set

(µ ±
σ)

Best Worst (µ ±
σ)

Best Worst (µ ±
σ)

Best Worst (µ ±
σ)

Best Worst

Cancer 97.4 ±
0.4

98.3 96.8 96.7 ±
0.5

97.7 96.0 94.5 ±
1.4

96.6 92.33 93.1 ±
5.0

97.1 79.4

Flag 67.9 ±
3.1

71.9 62.4 63.2 ±
2.8

68.3 58.7 46.2 ±
11.3

63.7 22.32 47.1 ±
6.9

56.8 34.4

FLIR 77.5 ±
1.6

79.9 75.6 76.2 ±
0.9

77.8 74.6 69.8 ±
4.1

76.2 62.64 67.9 ±
3.9

72.9 58.9

Glass 79.4 ±
5.4

92.6 74.6 73.6 ±
3.5

79.2 69.2 61.1 ±
5.8

70.2 51.48 62.9 ±
6.9

78.0 56.1

Hepatitis 94.2 ±
1.4

96.3 92.6 92.1 ±
1.2

94.4 90.7 87.7 ±
3.1

93.4 82.58 82.3 ±
5.1

89.1 71.7

Iono 95.7 ±
1.2

97.4 93.7 93.1 ±
1.1

94.6 91.3 85.4 ±
4.9

92.2 73.20 84.2 ±
3.8

89.4 78.0

Iris 96.9 ±
1.2

99.9 95.2 96.5 ±
1.0

98.0 95.2 96.8 ±
1.5

99.9 95.53 91.9 ±
2.6

95.5 86.6

Liver 70.5 ±
2.1

74.2 66.3 65.1 ±
2.7

69.6 60.5 58.0 ±
5.1

63.4 50.92 58.3 ±
7.6

69.2 47.0

Pima 75.4 ±
1.5

78.7 73.7 71.1 ±
1.1

73.1 69.8 67.3 ±
2.6

71.2 63.42 66.6 ±
3.5

70.3 60.8

Sonar 94.3 ±
0.9

95.6 92.8 91.3 ±
1.0

92.8 89.4 76.8 ±
7.1

94.8 67.47 75.8 ±
6.3

85.1 67.4

Soy 96.5 ±
0.6

97.4 95.2 94.7 ±
0.8

96.4 93.2 90.8 ±
2.3

93.9 86.66 86.9 ±
2.6

90.0 80.8

Tic-Tac-
Toe

85.8 ±
1.1

87.2 84.5 81.1 ±
1.1

82.9 79.0 76.5 ±
1.5

79.7 74.50 73.4 ±
3.4

80.0 69.2

Votes 98.6 ±
0.6

99.9 97.6 97.8 ±
0.5

98.9 97.0 94.6 ±
3.8

99.1 84.58 94.8 ±
3.3

98.4 87.6

Wine 99.1 ±
0.4

99.9 98.3 97.2 ±
1.3

99.1 95.1 89.9 ±
3.7

96.1 84.85 91.8 ±
5.4

98.1 84.8

Table 10 The Mean Classification Accuracy Rate and Standard Deviation For Different Data Sets

 70

Data Set

Weighted-sGA Classification Confidence Interval

For The Mean Accuracy

Binary-sGA Classification Confidence

Interval For the Mean Accuracy

Cancer (97.200075 – 97.699125) (96.41279 – 97.02721)

Flag (65.86412 – 69.51588) (61.55221 – 64.86779)

Glass (76.21775 – 82.58225) (71.54067 – 75.67933)

Hepatitis (93.4469 – 95.0931) (91.44124 – 92.87876)

Ionosphere (94.98226 – 96.47774) (92.42181 – 93.77819)

Liver (69.25956 – 71.74044) (63.61916 – 66.76084)

Pima (74.50575 – 76.31425) (70.50341 – 71.83659)

Sonar (93.78513 – 94.87487) (90.71456 – 91.88544)

Soybean (96.13482 – 96.86518) (94.31628 – 95.24372)

Vowel (98.73292 – 99.12708) (97.46381 – 98.13619)

Votes (98.28164 – 99.05836) (98.11712 – 98.52228)

Wine (98.80916 – 99.33084) (96.42589 – 98. 01411)

FLIR (76.57938 – 78.48062) (75.69105 – 76.82805)

Iris (96.20544 – 97.65456) (95.95876 – 97.14124)

Image (91.30469 – 92.25531) (75.37305 – 78.16695)

Tic-tac-toe (85.19239 – 86.46761) (80.50602 – 81.87398)

Table 11 90% Confidence Interval, 0.95-quantile of a t-variate with 9 degrees of freedom for the Weighted-
sGA and Binary-sGA Algorithms.

 71

Data Set Weighted-sGA Binary-sGA Mean

Difference

Statistics

Value

Cancer 97.45 96.72 0.73

Flag 67.69 63.21 4.48

Glass 79.4 73.61 5.79

Hepatitis 94.27 92.16 2.11

Ionosphere 95.73 93.1 2.63

Liver 70.5 65.19 5.31

Pima 75.41 71.17 4.24

Sonar 94.33 91.3 3.03

Soybean 96.5 94.78 1.72

Votes 98.67 97.8 0.87

Vowel 98.93 98.32 0.61

Wine 99.07 97.22 1.85

Flir 77.53 76.26 1.27

Iris 96.93 96.55 0.38

Tic-tac-toe 85.83 81.19 4.64

 Mean 2.644

 Variance 3.342

 Stdev 1.828

 Confidence Interval

(α = 0.1, p=0.95, t=41.761)

(1.761*(D52

/SQRT(15)))

 Confidence interval (1.812789 –

3.475211)

Table 12 Testing for a Zero Mean for Weighted-sGA and Binary-sGA at 90% Confidence level

In Table 12, you can see the comparison of different classification algorithms and their

classification accuracy performance. For some data sets GRaCCE has better classification accuracy, and for

some data sets other algorithms have better performance. But to make a correct conclusion, we have to

know exactly how the other algorithms are tested. The size of the training set and the size of the test set, the

selected class attributes and the features, the number of experiments is all needed data to have a good

statistical analysis.

 72

Non-GA Richeldi DistAl GRaCCE
Data Set
 Features Accuracy Features Accuracy Features Accuracy Features Accuracy

Cancer 4

74.7 - - 5.4 ± 1.4 99.3 ± 0.9 4.7±0.9 97.45 ± 0.43

Flag

- - - - 14.0 ± 2.6 78.1 ± 7.8 9.4±2.0 67.69 ± 3.15

Glass 4

62.5 4 70.5 ± 7.8 5.5 ± 1.4 80.8 ± 5.0 5.4±0.9 79.40 ± 5.49

Hepatitis 4

84.6 - 9.2 ± 2.3 97.1 ± 4.3 4.5±1.9 94.27 ± 1.42

Ionosphere

- - - - 17.3 ± 3.5 98.6 ± 2.4 11.1±2.5 95.73 ± 1.29

Liver

- - - - 4.1 ± 0.7 77.8 ± 4.0 3.7±1.42 70.50 ± 2.14

Pima -

- 3 73.2 ± 3.8 3.8 ± 1.5 79.5 ± 3.1 4.3±0.95 75.41 ± 1.56

Sonar -

- 16 76.0 ± 9.0 30.7 ± 3.7 97.2 ± 2.9 27.1±2.6 94.33 ± 0.94

Soybean

- - - - 19.4 ± 2.7 92.8 ± 5.9 21.8±2.5 96.5 ± 0.63

Votes 4

97.0 5 95.7 ± 3.5 8.9 ± 1.8 98.8 ± 1.2 3.2±0.92 98.67 ± 0.67

Wine

- - - - 6.7 ± 1.6 99.4 ± 2.1 5.6±1.43 99.07 ± 0.45

Table 13 Comparison between various approaches for feature subset selection and weighting

.

An important observation in Table 13 is that although DistAL algorithm has better classification

accuracies for most of the data sets, GRaCCE selects less feature sets. This can be an important

consideration when features have measurement costs. The overall cost produced by GRaCCE would be less

than the neural network algorithm of DistAL.

According to Table 13, it is clear that neural network based algorithm DistAl has better

performance than GRaCCE. We can say that the non-linear search capability of the neural network lead the

algorithm to find very specific features that have better impact on the classification accuracy and having

more features in the final subset explains why the classification accuracy rate of the DistAl algorithm is

higher than sGA-based GRaCCE. Since sGA searches linearly on the feature dimensions to find the best

subset of features selected from the original feature set, this linear limitation in the search process prevents

GRaCCE from finding more specific features that can increase the classification accuracy rate and having

less features in the final feature subset and having worse classification accuracy rate than neural network

based DistAl algorithm validates this conclusion.

 73

Data Set

Mean Classification
Accuracy Rate For
Distal

Mean Classification
Accuracy Rate For
GRaCCE (Weighted-GA)

The Difference In the
Classification Accuracy Rate of
Distal and GRaCCE Algorithms

Cancer 99.3 97.45 1.85
Flag 78.1 67.69 10.41
Glass 80.8 79.4 1.4
Hepatitis 97.1 94.27 2.83
Ionosphere 98.6 95.73 7.3
Liver 77.8 70.5 4.09
Pima 79.5 75.41 2.87
Sonar 97.2 94.33 -3.7
Soybean 92.8 96.5 0.13
Votes 98.8 98.67 0.33
Wine 99.4 99.07

Sample Mean

2.76

Sample Variance

13.82

Sample Standard
Deviation

3.72

Confidence Interval
(α = 0.01, p=0.9995,
t=4.587)

2.76 ± t × 3.72/√11

99% Confidence Interval (-2.37896 – 7.902592)
Table 14 Comparison of Distal Algorithm and GRaCCE Algorithm in terms of Classification Accuracy by
using 11 Different Data Sets by zero mean testing technique

We choose the DistAL algorithm to compare or results and their results and to find if there is any

significant difference between two algorithms. We compared GRaCCE and DistAL algorithm by using

zero-mean-test method and the results are shown in Table 15. We use this technique because there is not

more information about the experiments conducted for DisAL algorithm but since only 10 experiments are

conducted for GRaCCE, t-distribution is the most suitable distribution for our experiments because of the

small number of experiments.

At the 99% confidence level, since the confidence interval includes zero we can’t say that these

two algorithms are statistically different.

 74

Average Execution time on Pilot (A1-A2-A3-A4-A5)
Data Set

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A1 A2 A3 A4 A5
Data Set

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Weighted
Classifiction
Binary
Classification

Figure 31 The Mean Execution Time of Weighted sGA and Binary sGA Algorithms

The Mean Execution Time(sec) of
Weigted-sGA and Binary- sGA

0

500

1000

1500

2000

2500

3000

ca
nc

er fla
g

gla
ss

he
pa

titi
s

ion
o iris live

r
so

na
r

wine sc
ud

pim
a

vo
te

so
yb

ea
n

tic
tac

toe

Data Set

M
ea

n
Ex

ec
ut

io
n

Ti
m

e(
se

c)

Weighted
Classification
Binary
Classification

Figure 30 The Mean Execution Time of Weighted-sGA and Binary-sGA Algorithms

 75

The Mean Execution time of
GRaCCE(previous) and GRaCCE(current)

0

200

400

600

800

1000

1200

1400

1600

1800

cancer glass wine iris
Data Set

Ex
ec

ut
io

n
tim

e(
se

c)
Previous Algorithm

Current Algorithm

Figure 32: The Serial Execution time of GRaCCE (previous) and GRaCCE (current)

The Mean Number of Features Selected By GraCCE and DistAl

0

5

10

15

20

25

30

35

ca
nc

er fla
g

gla
ss

he
pa

titi
s

ion
o

live
r

so
na

r
wine pim

a
vo

te

so
yb

ea
n

Data Sets

of

 F
ea

tu
re

s
Se

le
ct

ed
(M

ea
n)

GRaCCE
DistAl

Figure 33: Mean Number of Features Selected by GRaCCE Algorithm and DistAL Algorithm for Different
Data Sets

 76

VIII. Conclusions and Future Work

8.1 Conclusion

As we specified in Chapter 1, our goal was to compare the performance of the weighted-sGA and

binary-sGA algorithms in terms of their classification accuracies. For that purpose we used different real-

world datasets that have similar and different characteristics. We designed full factorial experiment to

compare their performances. Our results show that weighting the features during the classification process

lead higher classification accuracy than that of binary feature subset selection. The reason for that is

weighting of features leads scales the feature dimensions in accordance with their associated weights, and

this linear scaling of feature dimension makes cluster more separable than the original condition. The

features that have greater weight values are highly important for the classification process and should not

be ignored.

On the other hand, since the sGA algorithm uses real-value chromosomes for Weighted-

Classification, the crossover and mutation operators has to be modified, because the original operators are

suitable only for binary chromosomes. When real value-chromosomes are used, according to problem

domain mapped to the algorithm domain, the sGA operators may produce infeasible solutions. To correct

these infeasible solutions, a repair algorithm has to be implemented and integrated in to sGA algorithm

used to solve the problem area. As our experiment results show in Chapter 7, these repair algorithms

increase the overall execution time of the genetic algorithms. Since the sGAs are iterative algorithms and

the repair algorithm has to be called for each individual after each crossover and mutation operator, the

increase in the execution time of sGA is inevitable if the algorithm is run for full generation. The weighted-

sGA algorithm takes almost two times longer to finish the same number of generation than binary-sGA

algorithm. The solution to this problem is the development of less time consuming repair algorithms or

finding another way to prevent infeasible solutions or to deal with infeasible solutions.

 77

The results also show that GA based neural network algorithms have better statistical results when

compared to the results of sGA algorithm in terms of classification accuracy, but the difference is not so

significant at the 99% confidence level. The advantage of a neural network over a genetic algorithm is

having the capability of non-linear search of solution areas (e.g. hyperplanes) instead of searching only on

the linear dimension. But the number of features selected by neural network algorithms tends to be higher

than that of GRaCCE. There should be a tradeoff between the number of selected features and the

classification accuracy. When the features have measuring costs, this tradeoff can be more important, since

the solution becomes a multi-objective solution which has the variables as selected number of features,

classification accuracy and the cost associated with each feature.

The results also show that when the number of features increases, the number of generations for

sGA to converge to a good solution increases too. The crossover operator especially causes this increase in

the number of generations. In our experiments two-point crossover operator is used but when the size of

chromosome is too large, the size of the chunks are also large. To increase the diversity in the population

without ruining the building block, uniform crossover could be used to have more cut points in the

chromosome. The preliminary experiments conducted to choose the best sGA operators that increase the

diversity in the population and produce better chromosomes in the next generations show that linear

ranking method increase the diversity in the population and lead slower convergence than roulette wheel

selection. Probabilistic tournament selection also lead slower convergence and its convergence rate is

nearly equal to the convergence rate of the linear-ranking method when the value of tournament size is

equal to 2 and the probability of selecting the best individual is between 0,65 and 0.75. Increasing the

tournament size and the probability of selecting the best individuals lead nearly the same convergence rate

as roulette wheel selection. Our preliminary experiments also show that tournament size depends on the

population size. If the population size is small, tournament size must be small too. In our case our

population size is 60 and the best tournament size for this population size is decided as 2 upon many

preliminary experiments with different tournament sizes. The other factor that can increase the diversity in

the population is higher mutation rates. The probability of mutation we selected is 0.1 and it introduced

 78

better chromosomes than the mutation probabilities 0.001 and 0.01. But as a side effect, higher mutation

also increases the number of generation required to converge to a good solution.

In the GA, a good individual which corresponds to a nearly optimal solution of the given problem

is generated by combining the schema (1) whose defining length is short, and (2) which has a high fitness

value. In our experiments we use two-point crossover operator since it introduce better offspring and more

diverse population of chromosomes than one-point crossover operator. Uniform crossover operator also

introduces better offspring and more diverse population of individuals that have better fitness values than

one-point crossover operator. Two-point crossover operator and uniform crossover operator have nearly

same performance in terms of fitness values of the children and both introduce also diverse population. We

now that if the defining length of chromosomes that have better fitness values are long, then two-point

crossover operator disrupts the good building blocks more than one-point crossover operator since it selects

more cut points than one-point crossover operator and after each two-point crossover operation is finished,

new individuals are introduced to the next generation that have ruined building blocks. We expect from a

crossover operation to cut from the edges or boundaries of the building blocks, and not to cut from the

middle of building blocks since this cut destroys the good building blocks. Loosing the good building

blocks causes a decrease in the total fitness value of the next generation since the next generation has worse

chromosomes in terms of their fitness values than those of the previous generation because of disrupted

building blocks of the individuals. Since uniform crossover operator selects more cut points than two-point

crossover operator, it has more disrupting effects of the good building blocks than two-point crossover

operator if the defining length of the individuals in the population is long. But our results show that since

two-point and uniform crossover operator introduce better individuals that have better classification

accuracy rate, the defining length of the chromosomes for feature subset weighting and feature subset

selection is not long but short. Since the defining length is short, more cut points introduce more diverse

individuals that have better fitness values. It is why two-point crossover operator and uniform crossover

operator have better classification accuracy rate than that of one-point crossover operator.

 79

The results for the classification accuracy rate of the different real data sets show that our sGA

algorithm has promising results. Most of the time we had better results than those of non-GA based

algorithms.

We showed that sGAs can be applied to feature subset selection and weighting problem easily can

solve many complex classification problems in a reasonable time.

In our experiments we used only real world data sets. For feature studies, artificial data sets can be

to test the GRaCCE’s performance under different condition such as having databases, which do not have

linearly separable clusters but non-linearly separable clusters.

8.2 Future Work

For classification of the unknown instances, GRaCCE only uses K-nearest neighborhood

algorithm, although this algorithm produces good classification results, having almost O (n3) time

complexity is the biggest disadvantage for this algorithm. Future studies can try to develop faster classifier

algorithms for GRaCCE environment.

The distance metric used to calculate the distances between two instances can affect the classifier

accuracy, and GRaCCE uses only Euclidean distance for K-NN algorithm. New distance metrics can be

developed that takes the feature correlations also into account. Euclidean distance does not take these

correlations into account and it assumes that every feature dimension has an equal importance weight in the

calculation of the distances.

Our research was based on only feature weighting and feature selection. We did not work on

feature extraction such as by combining some features according to some linear or non-linear operations,

new features can be created and added into existing feature dimension. These new features may cause less

overlaps between clusters, therefore may increase the classification accuracy for k-nearest neighborhood

algorithm. The feature extraction techniques can be studied in feature studies.

 80

Although we implemented outlier removal function in GRaCCE by using z-score method, we did

not use it in out experiments. The reason not to use it is because the function we developed for outlier

removal assumes normal distribution for each dataset. But in real-world datasets this assumptions may not

be always accurate and normal distribution may not represent the distribution of each dataset accurately.

Since the removal of the outlier are very important to reduce the class overlaps, outlier removal techniques

can be studied in the feature especially the which don’t make assumptions about the distribution of the

datasets.

Normally, there are two factors that will impact the learning of the classifier system, the

distribution of classes and the distribution of attributes. During the division process of the original dataset

into training set and test set, GRaCCE selects the examples from each class randomly. After the original

dataset is divided into training set and test set, it is not necessary that distribution of the classes be in

balance. There may not be equal number of examples from each class. But this imbalance can cause a bias

toward the dominant class in the selected examples and can increase the classification error rate or prevent

the resulting feature subset from being generalized to future unknown examples. Consequently, it is

necessary to introduce a new division method of original dataset into training set and test set to prevent the

skewed class distribution.

In our experiments we did not used the “n-fold cross-validation” technique where the data set is

divided into n equal part and each time n-1 different part is taken as training set and the other one part as

test set and the classification accuracy is calculated for all combinations of training sets and test sets. In

future studies, this technique can be used to increase the reliability of the KNN classifier system.

 81

A. Genetic Rule and Classifier Construction Environment (GRaCCE)

The algorithm employed by GRaCCE has five distinct phases: feature selection, partition

generation, data set approximation, region identification, and region refinement. Each of these pahses is

discussed in the sections that follow. It is worth noting that parameters described in these discussions are

user-tunable within the GRaCCE framework.

A.1 Feature Selection Phase

In this first phase of the algorithm, an optional feature subset selection process is performed to

reduce the dataset’s dimensionality. Feature subset selection is accomplished by using the GA-based

approach developed by Sklansky and Siedlecki [35]. In their technique, each database feature is assigned to

a gene in the GA’s chromosome structure. Each gene’s binary allele determines if the feature is ignored

(value=0) or utilized (value=1). The GA’s objective function evaluates each individual’s fitness based on a

K Nearest Neighbor (KNN) Algorithm [36, pages 55-57]; the fittest individuals are those that achieve the

best accuracy with the fewest enabled features. When the GA terminates, the data set’s dimensionality is

reduced b eliminating those features disabled in the fittest individual. Eliminating unnecessary features

helps overcome the curse of dimensionality [36, page 7] during training and also simplifies the structure of

the decision rules [19].

A.2 Partition Generation Phase

The purpose of this phase is to identify all potential class boundaries. The primary obstacle to

generating cluster partitions is finding good boundary points when classes are not linearly separable. An

elegant technique for solving this difficult problem was developed by Lee and Landgrebe [37]. According

to their technique, class seperation can be enhanced in the training data by removing points misclassified by

KNN algorithm. This winnowing process is iterated until none of the remaining points are misclassified.

After completing this procedure we are left with the reduced data set. Because separation between classes is

improved, the points that border neighboring classes are now easier to identify [19].

 82

These boundary points are now used to estimate the class boundaries. If we assume a Gaussian

distribution for each class, the decision boundary h(X) separating any two classes (ωi, ωj) in the d

dimensional feature space is given by Equation 1. The equations needed to compute the anchor point X0

through which h(X) runs can also be found [37]. For each boundary point, mean (
∧
µ) and covariance

matrix (
∧

∑) for each cluster are estimated from its neighboring points of the same cluster. As a result,

each generated partition is a local estimate how to best separate ωi and ωj.

∧

∧

∧
− ∧∧

∧
− ∧∧

∑

∑
∑∑ +−−−−−=

j

i

j j
t

ji i
t

i XXXXXh ln5.0)()(5.0)()(5.0)(11 µµµµ

A.3 Data Set Approximation Phase

Any complete set of CH regions must encompass the boundary points described. Then, training

data set can be replaced with the set of boundary points fro the duration of the search [19]. This substitution

has the advantage of accelerating the search by reducing the number of comparisons needed to determine

the fitness. Then all boundary points are grouped by class. For each class (ωi), a weight (ρ) is computed for

each boundary point equal to the percentage of ωi training points that are closest to it (relative to all other

boundary points in the same class). This weight represents the relative density of data around a boundary

point belonging to ωi . Once weights are computed for all N boundary points in ωi , weights are sorted in

decreasing order for their assigned class [19]. The next section shows how these weights enable GRaCCE

to better assess the fitness of a CH region containing a set of boundary points.

A.4 Region Identification Phase

GRaCCE now conducts a series of searches (by class) to identify the CH regions sought. This is

accomplished by finding a group of partitions that isolate boundary points belonging to the sane class with

(A.2.1)

 83

a user specified degree of purity (γuser). As in the feature selection phase, GRaCCE uses a GA to

accomplish the search. If GRaCCE generates l partitions from a dataset consisting of m classes, the GA’s

chromosome structure (I) is encoded such that each gene corresponds to a specific partition; the binary

allele of the gene shows the partition’s status (0 if disabled, 1 if enabled). Thus the region defined by each

individual (
→
a a ∈ I) in the GA population (P) is determined by which of its partitions in

→
a are enabled

[19].

A.5 Region Refinement Phase

The goal of this phase is to improve the regions found in the previous phase. This is accomplished

in three ways. First, GRaCCE eliminate regions that contain fewer than a specified percentage (nominally

two) of their target class data. Since small regions tend to use a large number of partitions, removing them

helps avoid over training while reducing the unnecessary complexity. Second, each boundary enabled in

→
a is tested to ensure it contributes to fitness function Φ(

→
a); any boundary found to be extraneous is

removed. At this point, it is considered the regions to be fully defined [19]. GRaCCE now recomputes the

covariance matrix of each region based on the data points assigned to it. With the updated covariance

matrix, the Equation 1 is used to adjust the orientation of each partition reflect the boundaries of the regions

they separate; only those adjustments that improve the classification accuracy of the training set are kept.

At the en of this phase, GRaCCE presents the simplified version of the regions and their respective decision

boundaries that were derived in the previous section. Because these decision boundaries separate each

region from the rest of the data space, we can think of each region as a rule for classifying the data and each

of its partitions as conditions for that rule.

 84

B. Fitness Landscapes

 Binary-sGA and Weighted-sGA Fitness Landscapes for Different Real-World Data Sets

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Glass Data Set Using Binary-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 34 Fitness Landscape for Glass Data Set Using Binary-Sga

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Glass Data Set Using Weighted-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 35 Fitness Landscape for Glass Data Set Using Weighted-sGA

 85

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Glass (Noise Added) Data Set
Using Binary-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 36 Fitness Landscape for Glass (Noise Added) Data Set Using Binary-sGA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Glass (Noise Added) Data Set
Using Weighted-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 37 Fitness Landscape for Glass (Noise Added) Data Set Using Weighted-sGA

 86

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Flag Data Set Using Binary-sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 38 Fitness Landscape for Flag Data Set Using Binary-sGA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Flag Data Set Using Weighted-
sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 39 Fitness Landscape for Flag Data Set Using Weighted-sGA

 87

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Liver Data Set Using Binary-sGA

50-55 55-60 60-65 65-70 70-75
75-80 80-85 85-90 90-95 95-100

Figure 40 Fitness Landscape for Liver Data Set Using Binary-sGA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Liver Data Set Using Binary-sGA

50-55 55-60 60-65 65-70 70-75
75-80 80-85 85-90 90-95 95-100

Figure 41 Fitness Landscape for Liver Data Set Using Weighted sGA

 88

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 40
45
50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Soybean Data Set Using Binary-
sGA

40-45 45-50 50-55 55-60 60-65 65-70
70-75 75-80 80-85 85-90 90-95 95-100

Figure 42 Fitness Landscape for Soybean Data Set Using Binary-sGA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1
2

4
8

16
32

64 50
55
60
65
70
75
80
85
90
95
100

Fitness Value
(Classification

Accuracy)

Chromosome
of Generation

Fitness Landscape for Soybean Data Set Using
Weighted-sGA

50-55 55-60 60-65 65-70 70-75
75-80 80-85 85-90 90-95 95-100

Figure 43 Fitness Landscape for Soybean Data Set Using Weighted-sGA

 89

C. Extended Results Of The Experiments for Real-World Datasets

Classification Accuracy Rate For GLASS
Data Set

70

71

72

73

74

75

76

77

78

79

80
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 44 Classification Accuracy Rate on Glass Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For GLASS
Data Set

57

58

59

60

61

62

63

64

65

66

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 45 Classification Accuracy Rate on Glass Test Set For Weighted-sGA and Binary-sGA

 90

Classification Accuracy Rate For PIMA
Data Set

68

69

70

71

72

73

74

75

76

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 46 Classification Accuracy Rate on Pima Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For PIMA
Data Set

65

65.5

66

66.5

67

67.5

68

68.5

69

69.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 47 Classification Accuracy Rate on Pima Test Set For Weighted-sGA and Binary-sGA

 91

Classification Accuracy Rate For SCUD
Data Set

74.5

75

75.5

76

76.5

77

77.5

78

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 48 Classification Accuracy Rate on FLIR Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For SCUD
 Data Set

66.5

67

67.5

68

68.5

69

69.5

70

70.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 49 Classification Accuracy Rate on FLIR Test Set For Weighted-sGA and Binary-sGA

 92

Classification Accuracy Rate For TIC-TAC-TOE
Data Set

77

78

79

80

81

82

83

84

85

86

87

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classif ication
Binary
Classif ication

Figure 50 Classification Accuracy Rate on TicTacToe Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For TIC-TAC-TOE
Data Set

71

72

73

74

75

76

77

78

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 51 Classification Accuracy Rate on Tic-Tac-Toe Test For Weighted-sGA and Binary-sGA

 93

Classification Accuracy Rate For VOTES
Data Set

93

94

95

96

97

98

99

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

in

Figure 52 Classification Accuracy Rate on Votes Train For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For VOTES
Test Set

82

84

86

88

90

92

94

96

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 53 Classification Accuracy Rate on Votes Test Set For Weighted-sGA and Binary-sGA

 94

Classification Accuracy Rate For WINE
Data Set

92

93

94

95

96

97

98

99

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 54 Classification Accuracy Rate on Wine Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For WINE
Data Set

87

88

89

90

91

92

93

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 55 Classification Accuracy Rate on Wine Test Set For Weighted-sGA and Binary-sGA

 95

Classification Accuracy Rate For FLAG
Data Set

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 56 Classification Accuracy Rate on Flag Train Set For Weighted-sGA and binary-sGA

Classification Accuracy Rate For FLAG
Data Set

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 57 Classification Accuracy Rate on Flag Test Set For Weighted-sGA and Binary-sGA

 96

Classification Accuracy Rate For SOYBEAN
Data Set

88

89

90

91

92

93

94

95

96

97

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 58 Classification Accuracy Rate on Soybean Train For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For SOYBEAN
Data Set

83

84

85

86

87

88

89

90

91

92

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 59 Classification Accuracy Rate on Soybean Test For Weighted-sGA and Binary-sGA

 97

Classification Accuracy Rate For IONOSPHERE
Data Set

87

88

89

90

91

92

93

94

95

96

97

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 60 Classification Accuracy Rate on Ionosphere Train Set For Weighted-sGA and Binary-sGA

Classification Accuracy Rate For IONOSPHERE
Data Set

81

82

83

84

85

86

87

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

0f Generation

Ac
cu

ra
cy

 R
at

e(
Av

er
ag

e)

Weighted
Classification
Binary
Classification

Figure 61 Classification Accuracy Rate on Ionosphere Test Set For Weighted-sGA and binary-sGA

 98

D. Multi-objective optimization

For many real world decision-making problems there is a need for simultaneous optimization of

multiple objectives. [30]

In feature subset selection and weighting problem one of the objectives is to increase the

classification accuracy of the classifier systems. If this is the only objective then it is said to be a single-

objective optimization. But usually we want minimum number of features selected to classify an unknown

object and at that time we want the highest classification accuracy with minimum number of selected

features. Obviously there are two objectives in this optimization problem, reducing the number of features

and increasing the classification accuracy. But it doesn’t necessarily mean that reducing the number of

features always increase the classification accuracy. During the search process of the genetic algorithms,

GA finds larger feature subsets that have better classification accuracy. Normally if equal weights are given

to these two objectives, then the algorithm either tries to find the minimum number of features or maximum

classification accuracy. But the solution can be a feature subset, which has zero features. But this is not a

feasible solution since we need at least on feature to represent a real-world object. If the features have

measurement costs then we may want to reduce the total cost of the selected feature subset while reducing

the number of selected features and increasing the classification accuracy. But any changes to the value of

any objective may have an opposite effect on the other objectives. For example increasing the classification

accuracy may increase the total cost of the selected feature subset. So, there must be a tradeoff among each

objective. Clearly this is a multi-objective problem having three objectives.

Such multi-objective optimization problems require separate techniques, which are very different

to the standard optimization techniques for single objective optimization. It is very clear that of there are

two objectives to be optimized, it might be possible to find a solution, which is best with respect to the first

objective, and another solution, which is the best with respect to the second objective. [30]

 99

It is convenient to classify all potential solutions to multi-objective optimization problem into

dominated solutions and non-dominated (Pareto-optimal) solutions. As solution s is dominated if there exits

a feasible solution y not worse than on all coordinates, i.e., for all objectives fi (I=1, . . . , k):

fi(x) ≤ fi(y) for all 1 ≤ i ≤ k. 1

If a solution is not dominated by any other feasible solution, we call it non-dominated (or Pareto-

optimal) solution. All Pareto-optimal solutions might be of some interests; ideally, the system should report

back the set of all Pareto-optimal points.

There are some classical methods for multi-objective optimization [31]. These include a method of

objective weighting, where multiple objective functions fi are combined into one overall objective function

F:

)(F(x)
1

xfwk

i ii∑ =
=

Where the weights wi ∋ [0..1] and 1
1

=∑ =

k

i iw . Different weight vectors provide different Pareto-optimal

solutions. Another method (method of distance functions) combines multiple objective functions into one

on the basis of demand level vector y:

2
1

1
)|)(|()(∑ =

−= k

i
r

ii yxfxF

Where (usually) r = 2 (Euclidean metric). [30]

Multi-objective optimization enjoyed some interest in the GA community. In 1984 Schaffer [32] developed

VEGA program (for Vector Evaluated Genetic Algorithm), which was an extension of the GENESIS

1 For maximization problems, otherwise the less equal inequality should be replaced by greater equality.

(C.1)

(C.2)

 100

program [33] to include multi-criteria functions. The main idea behind the VEGA system was a division of

the population into (equal sized) subpopulations; each subpopulation was “responsible” for a single

objective. The selection procedure was performed independently for each objective, but crossover was

performed across subpopulation boundaries. Additional heuristics were developed (e.g., wealth

redistribution scheme, crossbreeding plan) and studied to decrease a tendency of the system to converge

towards individuals, which were not the best with respect to any objective.

 101

E. Random number generators

The subject of random number generation has a very extensive literature (Knuth 1969), so this

section provides only a brief introduction to the topic. In fact, most programming language libraries include

at least one random number generator, so it may be not necessary to implement one as part of an

evolutionary algorithm. However, it is important to be aware of the properties of the random number

generator being used, and to avoid the use of poorly designed generator. For example, Booker (1987) points

out that care must be taken when using simple multiplicative random number generators to initialize a

population, because the values that are generated may not be randomly distributed in more than one

dimension. Booker recommends generating random populations as usual, and then performing repeated

crossover operation with uniform random pairing. Ideally, this would be done to the point of stochastic

equilibrium, meaning that the probability of occurrence of every schema is equal to the product of the

proportions of it defining length [29].

One commonly used method of generating a pseudorandom sequence is the linear congruential

method, defined by the relation

Xn + 1 = (arX + cr) mod mr n ≥ 0

Where mr > 0 is the modulus, X0 is the starting value (or seed), and ar and cr are constants in the

range [0, mr). The properties of the linear congruential method depend on the choice made for the constants

ar, cr, and mr. (See book by Knuth (1969) for a thorough discussion). Reasonably good results can be

obtained with the following values on a 32-bit computer (Press et al 1998):

ar = 4096

cr = 150889

mr = 714025

 102

The following routine uses the linear congruential method to generate a uniformly distributed

random number in the range [0, 1):

Input: the current random seed, Seed

Output: ur, a uniformly distributed random number in the range [0,1);

The seed is updates as a side effect

1 Urand (Seed)

2 Seed ← (arSeed + cr) mod mr;

3 ur ← Seed / mr;

4 return ur;

Given Urand above, the following generates a uniformly distributed real value in the range [a, b):

Input: lower bound a, upper bound b.

Output: u, a uniformly distributed random number in the range [a,b).

1 U (a, b)

2 ur←Urand (Seed);

3 u←a + (b-a) ur;

4 return u;

Note that the above procedure always returns a value strictly less than the upper bound b. The

following generates an integer value from the range [a, b] (inclusive of both endpoints):

Input: lower bound a (an integer), upper bound b (an integer).

Output: I, a uniformly distributed random integer in the range [a, b].

 103

1 Irand (a,b):

2 ur←Urand(Seed);

3 i←a + (b-a+1) ur ;

4 return i;

Finally, evolutionary algorithms often require the generation of a randomized shuffle of

permutation of objects. For example, it may be desired to shuffle a population before performing pair wise

crossover. The following code implements a random shuffle:

Input: perm, an integer array of size n.

Output: perm, an array containing a random permutation of values from 1 to n

1 Shuffle(perm):

2 for i←1 to n do

3 permit[i]←i;

 od

4 for i←1 to n-1 do

5 j←Irand(i, n);

6 {swap items i and j}

7 temp←perm[i]

8 perm[i]←perm[j]

9 perm[j]←temp;

 od

10 return perm;

 104

Bibliography

1 Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Simon

Fraser University, 2000

2 G. V. Trunk, A problem of Dimensionality: A Simple Example, IEEE Trans.

Pattern Anal. Mach. Intelligence, vol. 1, pp. 306-307, 1979

3 A. K. Jain and R. Dubes, Feature definition in pattern recognition with small sample

size, Pattern Recognition, vol. 10, pp. 85-97, 1978

4 F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for

large-scale feature selection. In: Pattern Recognition in Practice IV, Multiple

Paradigms, Comparative Studies and Hybrid Systems, eds. E. S. Gelsema and L. S.

Kanla. Amsterdam: Elsevier, 1994. pp. 403-413.

5 S.Cost and S. Salzberg, “A Weighted Nearest Neighbor Algorithm for Learning

with Symbolic Features,” Machine Learning, Vol.10, No. 1, Jan. 1993, pp. 57-78.

6 W. F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody,

“Further research on feature selection and classification using genetic algorithms,”

in Proc. Int. Conf. Genetic Algorithms, 1993, pp. 557-564

7 J. D. Kelly and L. Davis, “Hybridizing the genetic algorithm and the K nearest

neighbors classification algorithm,” in Proc. 4th. Int. Conf. Genetic Algorithms

Appl., 1991, pp.377-383

8 G. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the Subset Selection

Problem,” Proc. 11th Int’l Conf. Machine Learning, Morgan Kaufmann, San

Fransisco, 1994, pp. 121-129

9 H, Liu and R. Setiono. “A Probabilistic Approach to Feature Selection- A Filter

Solution,” Proc. 13th Int’l Conf. Machine Learning, Morgan Kaufmann, 1996, pp.

319-327

 105

10 F. Brill, D. Brown and W. Martin, “Fast Genetic Selection of Features for Neural

Network Classifiers,” IEEE Trans. Neural Networks, Vol. 3, No. 2, Mar. 1992, pp.

324-328.

11 M. Richeldi and P. Lanzi, “Performing Effective Feature Selection by Investigating

the Deep Structure of the Data,” Proc. Second Int’l Conf. Knowledge Discovery and

Data Mining, AAAI Press, Menlo Park, Calif, 1996, pp. 379-383.

12 A. S. Fraser, “Simulation of genetic systems by automatic digital computers-I:

Introduction,” Australian J. Biol. Sci., vol. 10, pp. 484-491, 1957

13 J. L. Crosby, “Computers in the study of evolution, ” Sci. Prog. Oxf., vol. 55, pp.

279-292, 1967

14 H. J. Bremermann, M. Rogson, and S. Salaff, “Global properties of evolution

process,” in Natural Automata and Useful Simulations, H. H. Patte, E. A. Edlsack,

L. Fein, and A. B. Callahan, Eds. Washington, DC: Spartan, 1966, pp. 3-41.

15 J. Reed, R. Toombs, and N. A. Barricelli, “Simulation of biological evolution and

machine learning: I. Selection of self-reproduction numeric patterns by data

processing machines, effects of hereditary control, mutation type and crossing,” J.

Theoret. Biol. , vol. 17, pp. 319-342, 1967, IEEE International, 3: 2140-2142, 2000.

16 D.B. Fogel, Ed., Evolutionary Computation: The Fossil Record. New York: IEEE

Press, 1998

17 J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ.

Michigan Press, 1975.

18 D. Goldberg, Genetic Algorithms in Search Optimization, and Machine Learning.

Reading, MA: Addison-Wesley, 1989

19 R. E. Marmelstein, “Evolving Compact Decision Rule Sets”, PhD. Dissertation, Air

Force Institute of Technology, 1999.

 106

20 R.O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, New York:

Wiley, 1973

21 Kira, K., and L. A. Rendell, “A Practical Approach to Feature Selection”, in

Proceedings of the Ninth International Conference on Machine Learning, pp. 249-

256, 1992

22 Krivda, C. D., “Data-Mining Dynamite,” BYTE, pp. 97-102, October 1995

23 Cuadrado, J. L., “Mining Statistics,” BYTE, pp. 97-100, February 1995

24 P. Larranaga, C.M.H. Kujpers, R.H. Murga I. Inza and S. Dizdarevic, “Genetic

Algorithms for the Travelling Salesman Problem: A Review of Representation and

Operators”

25 Wagner, T.J. “Convergence of the edited nearest neighbor,” IEEE Transactions on

the Information Theory, IT (19) (Sept 1973)

26 Devijer, P.A. and J. Kittler. “On the Edited Nearest Neighbor Rule.” Proceedings of

the 5th International Conference on Pattern Recognition, pp. 72-80. December

1980.

27 R. Jain, “The Art Of Computer Systems Performance Analysis”, John Wiley &

Sons Inc., pp.207, 1991

28 A. S.Wu, R.K. Lindsay, R. L. Riolo, “Empirical observations on the roles of

crossover and mutation”, Proceedings of Seventh International Conference on

Genetic Algorithms, pp. 362-369. July 1997.

29 T. Back, D.B. Fogel, Z. Michalewicz, “Evolutionary Computation 2 Advanced

Algorithms and Operations”, Institute o Physics Publishing, pp.56-57, 2000

30 Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolutionary Programs”,

pp. 179-180, 1994

 107

31 Srinivas, N. and Deb, K., Multi-objective Optimization Using Non-dominated

Sorting in Genetic Algorithms, Department of Mechanical Engineering, Indian

Institute of Technology, Kanput, India, 1993

32 Schaffer, J.D., Some experiments in Machine Learning Using Vector Evaluated

Genetic Algorithms, PhD Dissertation, Vanderbilt University, Nashville, 1984

33 Grefensette, J.J. GENESIS: A System for Using Genetic Search Procedures,

Proceedings of the 1984 Conference on Intelligent Systems and Machines, pp. 161-

165

34 David Strong, “Implementation and Analysis of the Parallel Genetic Rule and

Classifier Construction Environment”, Master’s Thesis, Air Force Institute of

Technology, 2001

35 J. Sklansky and W. Siedlecki. A note on genetic algorithms for large-scale feature

selection. Pattern Recognition Letters, 10:335-347, December 1989.

36 Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univesity

Presss, 1995

37 Chulhee Lee and David Landgrebe. Feature extraction based on decision

boundaries. IEEE Transactions on Patterns Analysis and Machine Intelligence, 15

(4), April 1993.

 108

38 J. Aguilar, J. Riquelme y Miquel Toro, “Three Geometric Approaches for

representing Decision Rules in a Supervised Learning System”, Late Breaking

Papers at the 1999 Genetic and Evolutionary Computation Conference, pp. 8, July

1999

 109

VITA

1st. Lt. Okan YILMAZ was born on 30 September 1976 in Kayseri, Turkey. He graduated from

Maltepe Military High School in Izmir, in August 1994. He entered undergraduate studies at the Air For

Academy in Istanbul where he graduated with Bachelor of Engineering degree in Computer Engineering in

August 1998. After graduating from Air Force Academy, he entered the Air Technical School in Izmir, in

September 1998 and graduated in August 1999 as a communication officer. His first assignment was at

Dalaman AFB as a communication officer in October 1999. In August 2000, he entered the Department of

Electrical and Computer Engineering, School of Engineering, Air Force Institute of Technology.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

18-03-2002
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Jun 2001 – Mar 2002

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 DATA MINING FEATURE SUBSET WEIGHTING AND SELECTION USING
GENETIC ALGORITHMS

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Yilmaz, Okan, Lieutenant, TUAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/02M-05

10. SPONSOR/MONITOR’S ACRONYM (S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Dr. Robert L. Ewing, Tech Adv.
 AFRL/IFTA
 WPAFB, OH 45433
 Ph. (937) 255 66 53 #3592
 Robert.Ewing@wpafb.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

 Professor Gary B. Lamont, CIV, AFIT/ENG, Ph. (937) 255-3450

14. ABSTRACT
 We present a simple genetic algorithm (sGA), which is developed under Genetic Rule and Classifier Construction
Environment (GRaCCE) to solve feature subset selection and weighting problem to have better classification accuracy on k-nearest
neighborhood (KNN) algorithm. Our hypotheses are that weighting the features will affect the performance of the KNN algorithm
and will cause better classification accuracy rate than that of binary classification. The weighted-sGA algorithm uses real-value
chromosomes to find the weights for features and binary-sGA uses integer-value chromosomes to select the subset of features from
original feature set. A Repair algorithm is developed for weighted-sGA algorithm to guarantee the feasibility of chromosomes.

By feasibility we mean that the sum of values of each gene in a chromosome must be equal to 1. To calculate the fitness
values for each chromosome in the population, we use K Nearest Neighbor Algorithm (KNN) as our fitness function. The Euclidean
distance from one individual to other individuals is calculated on the d-dimensional feature space to classify an unknown instance.
GRaCCE searches for good feature subsets and their associated weights. These feature weights are then multiplied with normalized
feature values and these new values are used to calculate the distance between features.

15. SUBJECT TERMS
 Genetic Algorithm, Data Mining, Classification, Feature Subset Weighting and Selection, K Nearest Neighbor Algorithm

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Lamont, B. Gary, Professor, CIV, AFIT/ENG

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

124

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3450, ext 4718; e-mail: Lamont.Gary@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

